
Chapter 4

Solution of linear systems of equation

Introduction

This chapter is devoted to the numerical solution of linear problems of the following form:

Find x ∈ Rn such that Ax = b, A ∈ Rn×n, b ∈ Rn. (4.1)

Systems of this type appear in a variety of applications. They naturally arise in the context
of linear partial differential equations, which we use as main motivating example. Partial
differential equations govern a wide range of physical phenomena including heat propagation,
gravity, and electromagnetism, to mention just a few. Linear systems in this context often
have a particular structure: the matrix A is generally very sparse, which means that most of
the entries are equal to 0, and it is often symmetric and positive definite, provided that these
properties are satisfied by the underlying operator.

There are two main approaches for solving linear systems:

• Direct methods enable to calculate the exact solution to systems of linear equations, up to
round-off errors, in a finite number of steps. Although this is an attractive property, direct
methods are usually too computationally costly for large systems: The cost of inverting a
general n× n matrix, measured in number of floating operations, scales as n3!

• Iterative methods, on the other hand, enable to progressively calculate increasingly accu-
rate approximations of the solution. Iterations may be stopped once the the residual is
sufficiently small. These methods are often preferable when the dimension n of the linear
system is very large.

This chapter is organized as follows.

• In Section 4.1, we introduce the concept of conditioning. The condition number of a matrix
provides information on the sensitivity of the solution to perturbations of the right-hand
side b or matrix A. It is useful, for example, in order to determine the potential impact
of round-off errors.

• In Section 4.2, we present the direct method for solving systems of linear equations. We

76

Chapter 4. Solution of linear systems of equation

study in particular the LU decomposition for an invertible matrix, as well as its variant
for symmetric positive definite matrices, which is called the Cholesky decomposition.

• In Section 4.3, we present iterative methods for solving linear systems. We focus in
particular on basic iterative methods based on a splitting, and on the conjugate gradient
method.

4.1 Conditioning

The condition number for a given problem measures the sensitivity of the solution to the
input data. In order to define this concept precisely, we consider a general problem of the
form F (x, d) = 0, with unknown x and data d. The linear system (4.1) can be recast in this
form, with the input data equal to b or A or both. We denote the solution corresponding to
perturbed input data d + ∆d by x + ∆x. The absolute and relative condition numbers are
defined as follows.

Definition 4.1 (Condition number for the problem F (x, d) = 0). The absolute and relative
condition numbers with respect to perturbations of d are defined as

Kabs(d) = lim
ε→0

(
sup

‖∆d‖6ε

‖∆x‖
‖∆d‖

)
, K(d) = lim

ε→0

(
sup

‖∆d‖6ε

‖∆x‖/‖x‖
‖∆d‖/‖d‖

)
.

The short notation K is reserved for the relative condition number, which is often more useful
in applications.

In the rest of this section, we obtain an upper bound on the relative condition number for
the linear system (4.1) with respect to perturbations first of b, and then of A. We use the
notation ‖•‖ to denote both a vector norm on Rn and the induced operator norm on matrices.

Proposition 4.1 (Perturbation of the right-hand side). Let x + ∆x denote the solution to
the perturbed equation A(x+∆x) = b+∆b. Then it holds that

‖∆x‖
‖x‖

6 ‖A‖‖A−1‖ ‖∆b‖
‖b‖

, (4.2)

Proof. It holds by definition of ∆x that A∆x = ∆b. Therefore, we have

‖∆x‖ = ‖A−1∆b‖ 6 ‖A−1‖‖∆b‖ = ‖Ax‖
‖b‖

‖A−1‖‖∆b‖ 6 ‖A‖‖x‖
‖b‖

‖A−1‖‖∆b‖. (4.3)

Here we employed (A.8), proved in Appendix A, in the first and last inequalities. Rearranging
the inequality (4.3), we obtain (4.2).

Proposition 4.1 implies that the relative condition number of (4.1) with respect to perturbations
of the right-hand side is bounded from above by ‖A‖‖A−1‖. Exercise 4.1 shows that there are
values of x and ∆b for which the inequality (4.2) is an equality, indicating that the inequality
is sharp.

77

Chapter 4. Solution of linear systems of equation

Studying the impact of perturbations of the matrix A is slightly more difficult, because this
time the variation ∆x of the solution does not depend linearly on the perturbation of the data.
Before stating and proving the main result, we show an ancillary lemma.

Lemma 4.2. Let B ∈ Rn×n be such that ‖B‖ < 1 in some submultiplicative matrix norm ‖•‖.
Then I− B is invertible and

‖(I− B)−1‖ 6 1

1− ‖B‖ , (4.4)

where I ∈ Rn×n is the identity matrix.

Proof. It holds for any matrix B ∈ Rn×n that

I− Bn+1 = (I− B)(I + B + · · ·+ Bn). (4.5)

Since ‖B‖ < 1 in a submultiplicative matrix norm, both sides of the equation are convergent in
the limit as n → ∞. The left-hand side converges to the identity matrix I, and the right-hand
side converges as n→∞ because {S0,S1, . . . } with

Sn := I + B + · · ·+ Bn

is a Cauchy sequence in the vector space of matrices endowed with the norm for which ‖B‖ < 1.
Indeed, by the triangle inequality and the submultiplicative property of the norm, it holds that

‖Sn+m − Sn‖ = ‖Bn+1 + · · ·+ Bn+m‖

6 ‖Bn+1‖+ · · ·+ ‖Bn+m‖ 6 ‖B‖n+1 + · · ·+ ‖B‖n+m

6
‖B‖n+1

1− ‖B‖ −−−→n→∞
0,

where we employed the formula for a geometric series in the last inequality. Equating the limits
of both sides of (4.5), we obtain

I = (I− B)
∞∑
i=0

Bi.

This implies that (I− B) is invertible with inverse given by a so-called Neumann series

(I− B)−1 =

∞∑
i=0

Bi.

Applying the triangle inequality repeatedly, and then using the submultiplicative property of
the norm, we obtain

∀n ∈ N,

∥∥∥∥∥
n∑

i=0

Bi

∥∥∥∥∥ 6
n∑

i=0

‖Bi‖ 6
n∑

i=0

‖B‖i = 1

1− ‖B‖ .

where we used the summation formula for geometric series in the last equality. Letting n→∞

78

Chapter 4. Solution of linear systems of equation

in this equation and using the continuity of the norm enables to conclude the proof.

Proposition 4.3 (Perturbation of the matrix). Let x+∆x denote the solution to the perturbed
equation (A +∆A)(x+∆x) = b. If A is invertible and ‖∆A‖ < ‖A−1‖−1, then

‖∆x‖
‖x‖

6 ‖A‖‖A−1‖‖∆A‖
‖A‖

(
1

1− ‖A−1∆A‖

)
. (4.6)

Proof. Left-multiplying both sides of the perturbed equation with A−1, we obtain

(
I + A−1∆A

)
(x+∆x) = x ⇔

(
I + A−1∆A

)
∆x = −A−1∆Ax. (4.7)

Since ‖A−1∆A‖ 6 ‖A−1‖‖∆A‖ < 1 by assumption, we deduce from Lemma 4.2 that the matrix
on the left-hand side is invertible with a norm bounded as in (4.4). Consequently, using in
addition the assumed submultiplicative property of the norm, we obtain that

‖∆x‖ = ‖(I + A−1∆A)−1A−1∆Ax‖ 6 ‖A−1∆A‖
1− ‖A−1∆A‖‖x‖.

which enables to conclude the proof.

Using Proposition 4.3, we deduce that the relative condition number of (4.1) with respect to
perturbations of the matrix A is also bounded from above by ‖A‖‖A−1‖, because the term
between brackets on the right-hand side of (4.6) converges to 1 as ‖∆A‖ → 0.

Propositions 4.1 and 4.3 show that the condition number, with respect to perturbations of
either b or A, depends only on A. This motivates the following definition.

Definition 4.2 (Condition number of a matrix). The condition number of a matrix A asso-
ciated to a vector norm ‖•‖ is defined as

κ(A) = ‖A‖‖A−1‖.

The condition number for the p-norm, defined in Definition A.4, is denoted by κp(A).

Note that the condition number κ(A) associated with an induced norm, i.e. a matrix norm
induced by a vector norm, is at least one. Indeed, since the identity matrix has induced norm
1, it holds that

1 = ‖I‖ = ‖AA−1‖ 6 ‖A‖‖A−1‖.

Since the 2-norm of an invertible matrix A ∈ Rn×n coincides with the spectral radius ρ(ATA),
the condition number κ2 corresponding to the 2-norm is equal to

κ2(A) =

√
λmax(ATA)
λmin(ATA) ,

where λmax(ATA) and λmin(ATA) are the maximal and minimal (both real and positive) eigen-
values of the matrix ATA.

79

Chapter 4. Solution of linear systems of equation

Example 4.1 (Perturbation of the matrix). Consider the following linear system with perturbed
matrix

(A +∆A)
(
x1

x2

)
=

(
0

0.01

)
, A =

(
1 0

0 0.01

)
, ∆A =

(
0 0

0 ε

)
,

where 0 < ε� 0.01. Here the eigenvalues of A are given by λ1 = 1 and λ2 = 0.01. The solution
when ε = 0 is given by (0, 1)T , and the solution to the perturbed equation is(

x1 +∆x1

x2 +∆x2

)
=

(
0
1

1+100ε

)
.

Consequently, we deduce that, in the 2-norm,

‖∆x‖
‖x‖

=

∣∣∣∣ 100ε

1 + 100ε

∣∣∣∣ ≈ 100ε = 100
‖∆A‖
‖A‖ .

In this case, the relative impact of perturbations of the matrix is close to κ2(A) = 100.

4.2 Direct solution method

In this section, we present the direct method for solving linear systems of the form (4.1) with a
general invertible matrix A ∈ Rn×n. The direct method can be decomposed into three steps:

• First calculate the so-called LU decomposition of A, i.e. find an upper triangular matrix U
and a unit lower triangular matrix L such that A = LU. A unit lower triangular matrix is
a lower triangular matrix with only ones on the diagonal.

• Then solve Ly = b using a method called forward substitution.

• Finally, solve Ux = y using a method called backward substitution.

By construction, the solution x thus obtained is a solution to (4.1). Indeed, we have that

Ax = LUx = Ly = b.

4.2.1 LU decomposition

In this section, we first discuss the existence and uniqueness of the LU factorization. We
then describe a numerical algorithm for calculating the factors L and U, based on Gaussian
elimination.

Existence and uniqueness of the decomposition

We present a necessary and sufficient condition for the existence of a unique LU decomposition
of a matrix. To this end, we define the principal submatrix of order i of a matrix A ∈ Rn×n as
the matrix Ai = A[1 : i, 1 : i], in Julia notation.

80

Chapter 4. Solution of linear systems of equation

Proposition 4.4. The LU factorization of a matrix A ∈ Rn×n, with L unit lower triangular
and U upper triangular, exists and is unique if and only if the principal submatrices of A of
all orders are nonsingular.

Proof. We prove only the “if” direction; see [9, Theorem 3.4] for the “only if” implication.
The statement is clear if n = 1. Reasoning by induction, we assume that the result is

proved up to n − 1. Since the matrix An−1 and all its principal submatrices are nonsingular
by assumption, it holds that An−1 = Ln−1Un−1 for a unit lower triangular matrix Ln−1 and an
upper triangular matrix Un−1. These two matrices are nonsingular, for if either of them were
singular then the product An−1 = Ln−1Un−1 would be singular as well. Let us decompose A as
follows:

A =

(
An−1 c

dT ann

)
.

Let ` and u denote the solutions to Ln−1u = c and UT
n−1` = d. These solutions exist and are

unique, because the matrices Ln−1 and Un−1 are nonsingular. Letting unn = ann− (`Tu)−1, we
check that A factorizes as(

An−1 c

dT ann

)
=

(
Ln−1 0n−1

`T 1

)(
Un−1 u

0Tn−1 unn

)
.

This completes the proof of the existence of the decomposition. The uniqueness of the factors
follows from the uniqueness of `, u and unn.

Proposition 4.4 raises the following question: are there classes of matrices whose principal
matrices are all nonsingular? The answer is positive, and we mention, as an important example,
the class of positive definite matrices. Proving this is the aim of Exercise 4.4.

Gaussian elimination algorithm for computing L and U

So far we have presented a condition under which the LU decomposition of a matrix exists and
is unique, but not a practical method for calculating the matrices L and U. We describe in this
section an algorithm, known as Gaussian elimination, for calculating the LU decomposition of
a matrix. We begin by introducing the concept of Gaussian transformation.

Definition 4.3. A Gaussian transformation is a matrix of the form Mk = I−c(k)eTk , where ek

is the column vector with entry at index k equal to 1 and all the other entries equal to zero,
and c(k) is a column vector of the following form:

c(k) =
(
0 0 . . . 0 c

(k)
k+1 c

(k)
k+2 . . . c

(k)
n

)T
.

The action of a Gaussian transformation Mk left-multiplying a matrix A ∈ Rn×n is to replace
the rows from index k+1 to index n by a linear combination involving themselves and the k-th

81

Chapter 4. Solution of linear systems of equation

row. To see this, let us denote by (r(i))16i6n the rows of a matrix T ∈ Rn×n. Then, we have

MkT =
(
I− c(k)eTk

)
T =



1

1
. . .

1

−c(k)k+1 1
... . . .

−c(k)n 1





r(1)

r(2)

...
r(k)

r(k+1)

...
r(n)


=



r(1)

r(2)

...
r(k)

r(k+1) − c
(k)
k+1r

(k)

...
r(n) − c

(k)
n r(k)


We show in Exercise 4.2 that the inverse of a Gaussian transformation matrix is given by

(I− c(k)eTk)
−1 = I + c(k)eTk . (4.8)

The idea of the Gaussian elimination algorithm is to successively left-multiply A with Gaussian
transformation matrices M1, then M2, etc. appropriately chosen in such a way that the ma-
trix A(k), obtained after k iterations, is upper triangular up to column k. That is to say, the
Gaussian transformations are constructed so that all the entries in columns 1 to k under the
diagonal of the matrix A(k) are equal to zero. The resulting matrix A(n−1) after n− 1 iterations
is then upper triangular and satisfies

A(n−1) = Mn−1 . . .M1A.

Rearranging this equation, we deduce that

A = (M−1
1 . . .M−1

n−1)A
(n−1).

The first factor is lower triangular by (4.8) and Exercise 4.3. The product in the definition of
the matrix L admits a simple explicit expression.

Lemma 4.5. It holds that

M−1
1 · · ·M

−1
n−1 = (I + c(1)eT1) · · · (I + c(n−1)eTn−1) = I +

n−1∑
i=1

c(i)eTi .

Proof. Notice that, for i < j,

c(i)eTi c
(j)eTj = c(i)(eTi c

(j))eTj = c(i)0eTj = 0.

The statement then follows easily by expanding the product.

A corollary of Lemma 4.5 is that all the diagonal entries of the lower triangular matrix L
are equal to 1; the matrix L is unit lower triangular. The full expression of the matrix L given

82

Chapter 4. Solution of linear systems of equation

the Gaussian transformations is

L = I +
(
c(1) . . . c(n−1) 0n

)
=



1

c
(1)
2 1

c
(1)
3 c

(2)
3 1

c
(1)
4 c

(2)
4 c

(3)
4 1

...
...

... . . .
c
(1)
n c

(2)
n c

(3)
n . . . c

(n−1)
n 1


(4.9)

Therefore, the Gaussian elimination algorithms, if all the steps are well-defined, correctly gives
the LU factorization of the matrix A. Of course, the success of the strategy outlined above
for the calculation of the LU factorization hinges on the existence of an appropriate Gaussian
transformation at each iteration. It is not difficult to show that, if the (k + 1)-th diagonal
entry of the matrix A(k) is nonzero for all k ∈ {1, . . . , n− 2}, then the Gaussian transformation
matrices exist and are uniquely defined.

Lemma 4.6. Assume that A(k) is upper triangular up to column k included, with k 6 n − 2.
If a(k)k+1,k+1 > 0, then there is a unique Gaussian transformation matrix Mk+1 such that Mk+1A(k)

is upper triangular up to column k + 1. This transformation matrix is given by I− c(k+1)eTk+1,
where

c(k+1) =

(
0 0 . . . 0

a
(k)
k+2,k+1

a
(k)
k+1,k+1

a
(k)
k+3,k+1

a
(k)
k+1,k+1

. . .
a
(k)
n,k+1

a
(k)
k+1,k+1

)T

.

Proof. We perform the multiplication explicitly. Denoting denote by (r(i))1 6 i 6 n the rows
of A(k), we have

Mk+1A(k) =



1

1
. . .

1

−c(k+1)
k+2 1
... . . .

−c(k+1)
n 1





r(1)

r(2)

...
r(k+1)

r(k+2)

...
r(n)


=



r(1)

r(2)

...
r(k+1)

r(k+2) − c
(k+1)
k+2 r(k+1)

...
r(n) − c

(k+1)
n r(k+1)


.

We need to show that the matrix on the right-hand side is upper triangular up to column k+1

included. This is clear by definition of c(k+1) and from the fact that A(k) is upper triangular up
to column k by assumption.

The diagonal elements a
(k)
k+1,k+1, where k ∈ {0, . . . , n − 2}, are called the pivots. We now

prove that, if an invertible matrix A admits an LU factorization, then the pivots are necessarily
nonzero and the Gaussian elimination algorithm is successful.

83

Chapter 4. Solution of linear systems of equation

Proposition 4.7 (Gaussian elimination works �). If A is invertible and admits an LU factor-
ization, then the Gaussian elimination algorithm is well-defined and successfully terminates.

Proof. We denote by c(1), . . . , c(n−1), the columns of the matrix L− I. Then the matrices given
by Mk = I− c(k)eTk , for k ∈ {1, . . . , n− 1}, are Gaussian transformations and it holds that

L = M−1
1 · · ·M

−1
n−1

in view of Lemma 4.5. Since A = LU by assumption, the result of the product

Mn−1 · · ·M1A = U

is upper triangular. Let us use the notation A(k) = Mk · · ·M1A. Our goal is to show that the
matrices M1, . . . ,Mn−1 are the same as those obtained by the Gaussian elimination algorithm.

Of all the Gaussian transformations M1, . . . ,Mn−1, only M1 acts on the second row of the
matrix it multiplies. Therefore, the entry (2, 1) of U coincides with the entry (2, 1) of A(1),
which implies that a

(1)
2,1 = 0. Then notice that a

(k)
3,1 = a

(1)
3,1 for all k > 1, because the entry

(3, 1) of the matrix M2A(1) is given by a
(1)
3,1 − c

(2)
3 a

(1)
2,1 = a

(1)
3,1, and all the other transformation

matrices M3, . . . ,Mn−1 leave the third row invariant. Consequently, it holds that a(1)3,1 = u3,1 = 0.
Continuing in this manner, we deduce that A(1) is upper triangular in the first column and that,
since A is invertible by assumption, the first pivot a11 is nonzero. Since this pivot is nonzero,
the matrix M1 is uniquely defined by Lemma 4.6.

The reasoning can then be repeated with other columns, in order to deduce that A(k) is
upper triangular up to column k and that all the pivots a

(k−1)
kk are nonzero. Therefore, all the

Gaussian transformation matrices are uniquely defined given Lemma 4.6.

Computer implementation

The Gaussian elimination procedure is summarized as follows.
A(0) ← A, L← I
for i ∈ {1, . . . , n− 1} do

Construct Mi as in Lemma 4.6.
A(i) ← MiA(i−1), L← LM−1

i

end for
U← A(n−1).
In practice, it is not necessary to explicitly create the Gaussian transformation matrices,

or to perform full matrix multiplications. A more realistic version of the algorithm in Julia is
given below. The code exploits the relation (4.9) between L and the parameters of the Gaussian
transformations.

1 # A is an invertible matrix of size n x n
2 L = [i == j ? 1.0 : 0.0 for i in 1:n, j in 1:n]
3 U = copy(A)
4 for i in 1:n-1

84

Chapter 4. Solution of linear systems of equation

5 for r in i+1:n
6 U[i, i] == 0 && error("Pivotal entry is zero!")
7 ratio = U[r, i] / U[i, i]
8 L[r, i] = ratio
9 U[r, i:end] -= U[i, i:end] * ratio

10 end

11 end

12 # L is unit lower triangular and U is upper triangular

Computational cost

The computational cost of the algorithm, measured as the number of floating point operations
(flops) required, is dominated by the Gaussian transformations, in line 9 in the above code.
All the other operations amount to a computational cost scaling as O(n2), which is negligible
compared to the cost of the LU factorization when n is large. This factorization requires

- and *︷︸︸︷
2×

n−1∑
i=1︸︷︷︸

for i in 1:n-1

for r in i+1:n︷ ︸︸ ︷
(n− i) (n− i+ 1)︸ ︷︷ ︸

indices [i:end]

flops = 2

3
n3 +O(n2) flops.

4.2.2 Backward and forward substitution

Once the LU factorization has been completed, the solution to the linear system can be obtained
by first using forward, and then backward substitution, which are just bespoke methods for
solving linear systems with lower and upper triangular matrices, respectively. Let us consider
the case of a lower triangular system:

Ly = b

Notice that the unknown y1 may be obtained from the first equation of the system. Then,
since y1 is known, the value of y2 can be obtained from the second equation, etc. A simple
implementation of this algorithm is as follows:

L is unit lower triangular
y = copy(b)
for i in 2:n

for j in 1:i-1
y[i] -= L[i, j] * y[j]

end

end

4.2.3 Gaussian elimination with pivoting �

The Gaussian elimination algorithm that we presented in Section 4.2.1 relies on the existence
of an LU factorization. In practice, this assumption may not be satisfied, and in this case a
modified algorithm, called Gaussian elimination with pivoting, is required.

85

Chapter 4. Solution of linear systems of equation

In fact, pivoting is useful even if the usual LU decomposition of A exists, as it enables to
reduce the condition number of the matrices matrices L and U. There are two types of pivoting:
partial pivoting, where only the rows are rearranged through a permutation at each iteration,
and complete pivoting, where both the rows and the columns are rearranged at each iteration.

Showing rigorously why pivoting is useful is beyond the scope of this course. In this section,
we only present the partial pivoting method. Its influence on the condition number of the
factors L and U is studied empirically in Exercise 4.6. It is useful at this point to introduce the
concept of a row permutation matrix.

Row permutation matrix

Definition 4.4. Let σ : {1, . . . , n} → {1, . . . , n} be a permutation, i.e. a bijection on the
set {1, . . . , n}. The row permutation matrix associated with σ is the matrix with entries

pij =

1 if i = σ(j),

0 otherwise.

When a row permutation P left-multiplies a matrix B ∈ Rn×n, row i of matrix B is moved to
row index σ(i) in the resulting matrix, for all i ∈ {1, . . . , n}. A permutation matrix has a single
entry equal to 1 per row and per column, and its inverse coincides with its transpose: P−1 = PT .

Partial pivoting

Gaussian elimination with partial pivoting applies for any invertible matrix A, and it outputs 3
matrices: a row permutation P, a unit triangular matrix L, and an upper triangular matrix U.
These are related by the relation

PA = LU.

This is sometimes called a PLU decomposition of the matrix A. It is not unique in general but,
unlike the usual LU decomposition, it always exists provided that A is invertible. We take this
for granted in this course.

The idea of partial pivoting is to rearrange the rows at each iteration of the Gaussian
elimination procedure in such a manner that the pivotal entry is as large as possible in absolute
value. One step of the procedure reads

A(k+1) = Mk+1Pk+1A(k). (4.10)

Here Pk+1 is a simple row permutation matrix which, when acting on A(k), interchanges row k+1

and row `, for some index ` > k+1. The row index ` is selected in such a way that the absolute
value of the pivotal entry, in position (k + 1, k + 1) of the product Pk+1A(k), is maximum. The
matrix Mk+1 is then the unique Gaussian transformation matrix ensuring that A(k+1) is upper
triangular up to column k+1, obtained as in Lemma 4.6. The resulting matrix A(n−1) after n−1
steps of the form (4.10) is upper triangular and satisfies

A(n−1) = Mn−1Pn−1 · · ·M1P1A ⇔ A = (Mn−1Pn−1 · · ·M1P1)
−1A(n−1).

86

Chapter 4. Solution of linear systems of equation

The first factor in the decomposition of A is not necessarily lower triangular. However, using
the notation M = Mn−1Pn−1 · · ·M1P1 and P = Pn−1 · · ·P1, we have

PA = PM−1U = (PM−1)U =: LU. (4.11)

Lemma 4.8 below shows that, as the notation L suggests, the matrix L = (PM−1) on the right-
hand side is indeed lower triangular. Before stating and proving the lemma, we note that P is
a row permutation matrix, and so the solution to the linear system Ax = b can be obtained by
solving LUx = PTb by forward and backward substitution. Since P is a very sparse matrix, the
right-hand side PTb can be calculated very efficiently.

Lemma 4.8. The matrix L = PM−1 is unit lower triangular with all entries bounded in absolute
value from above by 1. It admits the expression

L = I + (Pn−1 · · ·P2c
(1))eT1 + (Pn−1 · · ·P3c

(2))eT2 + · · ·+ (Pn−1c
(n−2))eTn−2 + c(n−1)eTn−1.

Proof. Let M(k) = MkPk · · ·M1P1 and P(k) = Pk · · ·P1. It is sufficient to show that

P(k)
(
M(k)

)−1
= I + (Pk · · ·P2c

(1))eT1 + (Pk · · ·P3c
(2))eT2 + · · ·+ (Pkc

(k−1))eTk−1 + c(k)eTk (4.12)

for all k ∈ {1, . . . , n− 1}. The statement is clear for k = 1, and we assume by induction that it
is true up to k − 1. Then notice that

P(k)
(
M(k)

)−1
= Pk

(
P(k−1)

(
M(k−1)

)−1
)

P−1
k M−1

k

= Pk

(
I + (Pk−1 · · ·P2c

(1))eT1 + · · ·+ (Pk−1c
(k−2))eTk−2 + c(k−1)eTk−1

)
P−1
k M−1

k

=
(

I + (PkPk−1 · · ·P2c
(1))eT1 + · · ·+ (PkPk−1c

(k−2))eTk−2 + (Pkc
(k−1))eTk−1

)
M−1

k .

In the last equality, we used that eTi P−1
k = (Pkei)

T = eTi for all i ∈ {1, . . . , k − 1}, because the
row permutation Pk does not affect rows 1 to k − 1. Using the expression M−1

k = I + c(k)eTk ,
expanding the product and noting that eTj c

(k) = 0 if j 6 k, we obtain (4.12). The statement
that the entries are bounded in absolute value from above by 1 follows from the choice of the
pivot at each iteration.

The expression of L in Lemma 4.8 suggests the iterative procedure given in Algorithm 2 for
performing the LU factorization with partial pivoting. A Julia implementation of this algorithm
is presented in Listing 1.

Auxiliary function
function swap_rows!(i, j, matrices...)

for M in matrices
M_row_i = M[i, :]
M[i, :] = M[j, :]
M[j, :] = M_row_i

end

87

Chapter 4. Solution of linear systems of equation

Algorithm 2 LU decomposition with partial pivoting

Assign A(0) ← A and P← I
for i ∈ {1, . . . , n− 1} do

Find the row index k > i such that A(i−1)
k,i is maximum in absolute value.

Interchange the rows i and k of matrices A(i−1) and P, and of vectors c(1), . . . , c(i−1).
Construct Mi with corresponding column vector c(i) as in Lemma 4.6.
Assign A(i) ← MiA(i−1)

end for
Assign U← A(n−1).
Assign L← I +

(
c(1) . . . c(n−1) 0n

)
.

end

n = size(A)[1]
L, U = zeros(n, 0), copy(A)
P = [i == j ? 1.0 : 0.0 for i in 1:n, j in 1:n]
for i in 1:n-1

Pivoting
index_row_pivot = i - 1 + argmax(abs.(U[i:end, i]))
swap_rows!(i, index_row_pivot, U, L, P)

Usual Gaussian transformation
c = [zeros(i-1); 1.0; zeros(n-i)]
for r in i+1:n

ratio = U[r, i] / U[i, i]
c[r] = ratio
U[r, i:end] -= U[i, i:end] * ratio

end

L = [L c]
end

L = [L [zeros(n-1); 1.0]]
It holds that P*A = L*U

Listing 1: LU factorization with partial pivoting.

Remark 4.1. It is possible to show that, if the matrix A is column diagonally dominant in the
sense that

∀j ∈ {1, . . . , n}, |ajj | >
n∑

i=1,i 6=j

|aij |,

then pivoting does not have an effect: at each iteration, the best pivot is already on the
diagonal.

4.2.4 Direct method for symmetric positive definite matrices

The LU factorization with partial pivoting applies to any matrix A ∈ Rn×n that is invertible.
If A is symmetric positive definite, however, it is possible to compute a factorization into lower
and upper triangular matrices at half the computational cost, using the so-called Cholesky
decomposition.

88

Chapter 4. Solution of linear systems of equation

Lemma 4.9 (Cholesky decomposition). If A is symmetric positive definite, then there exists a
lower-triangular matrix C ∈ Rn×n such that

A = CCT . (4.13)

Equation (4.13) is called the Cholesky factorization of A. The matrix C is unique if we require
that all its diagonal entries are positive.

Proof. Since A is positive definite, its LU decomposition exists and is unique by Propositions 4.4
and 4.7. Let D denote the diagonal matrix with the same diagonal as that of U. Then

A = LD(D−1U).

Note that the matrix D−1U is unit upper triangular. Since A is symmetric, we have

A = AT = (D−1U)T (LD)T .

The first and second factors on the right-hand side are respectively unit lower triangular and
upper triangular, and so we deduce, by uniqueness of the LU decomposition, that L = (D−1U)T

and U = (LD)T . But then

A = LU = LDLT = (L
√

D)(
√

DL)T .

Here
√

D denotes the diagonal matrix whose diagonal entries are obtained by taking the square
root of those of D, which are necessarily positive because A is positive definite. This implies the
existence of a Cholesky factorization with C = L

√
D.

Calculation of the Choleski factor

The matrix C can be calculated from (4.13). For example, developing the matrix product gives
that a1,1 = c21,1 and so c1,1 =

√
a1,1. It is then possible to calculate c2,1 from the equation a2,1 =

c2,1c1,1, and so on. Implementing the Cholesky factorization is the goal of Exercise 4.7.

4.2.5 Direct methods for banded matrices

In applications related to partial differential equations, the matrix A ∈ Rn×n very often has a
bandwidth which is small in comparison with n.

Definition 4.5. The bandwidth of a matrix A ∈ Rn×n is the smallest number k ∈ N such
that aij = 0 for all (i, j) ∈ {1, . . . , n}2 with |i− j| > k.

It is not difficult to show that, if A is a matrix with bandwidth k, then so are L and U in the
absence of pivoting. This can be proved by equaling the entries of the product LU with those

89

Chapter 4. Solution of linear systems of equation

of the matrix A. We emphasize, however, that the sparsity structure within the band of A may
be destroyed in L and U; this phenomenon is called fill-in.

Reducing the bandwidth: the Cuthill–McKee algorithm �

The computational cost of calculating the LU or Cholesky decomposition of a matrix with
bandwidth k scales as O(nk2), which is much better than the general scaling O(n3) if k � n.
In applications, the bandwidth k is often related to the matrix size n. For example, if A
arises from the discretization of the Laplacian operator, then k = O(

√
n) provided that a good

ordering of the vertices is employed. In this case, the computational cost scales as O(n2).
Since a narrow band is associated with a lower computational cost of the LU decomposition,

it is natural to wonder whether the bandwidth of a matrix A can be reduced. A possible strategy
to this end is to use permutations. More precisely, is it possible to identify a row permutation
matrix P such that PAPT has minimal bandwidth? Given such a matrix, the solution to the
linear system (4.1) can be obtained by first solving (PAPT)y = Pb, and then letting x = PTy.

The Cuthill–McKee algorithm is a heuristic method for finding a good, but sometimes not
optimal, permutation matrix P in the particular case where A is a symmetric matrix. It is based
on the fact that, to a symmetric matrix A, we can associate a unique undirected graph whose
adjacency matrix A∗ has the same sparsity structure as that of A, i.e. zeros in the same places.
For any row permutation matrix Pσ with corresponding permutation σ : {1, . . . , n} → {1, . . . , n}
(see Definition 4.4), the matrices PσAPT

σ and PσA∗PT
σ also have the same sparsity structure.

Therefore, minimizing the bandwidth of PσAPT
σ is equivalent to minimizing the bandwidth

of PσA∗PT
σ . The key insight for understanding the Cuthill–McKee method is that PσA∗PT

σ

is the adjacency matrix of the graph obtained by renumbering the nodes according to the
permutation σ, i.e. by changing the number of the nodes from i to σ(i). Consider, for example,
the following graph and renumbering:

1

2

34

5

6

7 8


1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1


→



1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1



1

2

46

8

7

5 3

Here we also wrote the adjacency matrices associated to the graphs. We assume that the nodes
are all self-connected, although this is not depicted, and so the diagonal entries of the adjacency
matrices are equal to 1. This renumbering corresponds to the permutation(

i : 1 2 3 4 5 6 7 8

σ(i) : 1 2 4 6 8 7 5 3

)
,

and we may verify that the adjacency matrix of the renumbered graph can be obtained from

90

Chapter 4. Solution of linear systems of equation

the associated row permutation matrix:

PA∗PT =



1

1

1

1

1

1

1

1





1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1





1

1

1

1

1

1

1

1


In this example, renumbering the nodes of the graph enables a significant reduction of the

bandwidth, from 7 to 2. The Cuthill–McKee algorithm, which was employed to calculate the
permutation, is an iterative method that produces an ordered n-tuple R containing the nodes in
the new order; in other words, it returns

(
σ−1(1), . . . , σ−1(n)

)
. The first step of the algorithm

is to find the node i with the lowest degree, i.e. with the smallest number of connections to other
nodes, and to initialize R = (i). Then the following steps are repeated until R contains all the
nodes of the graph:

• Define Ai as the set containing all the nodes which are adjacent to a node in R but not
themselves in R;

• Sort the nodes in Ai according to the following rules: a node i ∈ Ai comes before j ∈ Ai if i
is connected to a node in R that comes before all the nodes in R to which j is connected.
As a tiebreak, precedence is given to the node with highest degree.

• Append the nodes in Ai to R, in the order determined in the previous item.

1 1

2

3
1

2
4

5 3
1

2
46

7
5 3

1

2
46

8

7
5 3

Figure 4.1: Illustration of the Cuthill–McKee algorithm. The new numbering of the nodes
is illustrated. The first node was chosen randomly since all the nodes have the same degree.
In this example, the ordered tuple R evolves as follows: (1) → (1, 2, 8) → (1, 2, 8, 3, 7) →
(1, 2, 8, 3, 7, 4, 6)→ (1, 2, 8, 3, 7, 4, 6, 5).

The steps of the algorithm for the example above are depicted in Figure 4.1. Another
example, taken from the original paper by Cuthill and McKeen [1], is presented in Figure 4.2.

4.3 Iterative methods for linear systems

Iterative methods enjoy more flexibility than direct methods, because they can be stopped at
any point if the residual is deemed sufficiently small. This generally enables to obtain a good
solution at a computational cost that is significantly lower than that of direct methods. In this

91

Chapter 4. Solution of linear systems of equation

Figure 4.2: Example from the original Cuthill–McKee paper [1].

section, we present and study two classes of iterative methods: basic iterative methods based
on a splitting of the matrix A, and the so-called Krylov subspace methods.

4.3.1 Basic iterative methods

The basic iterative methods are particular cases of a general splitting method. Given a splitting
of the matrix of the linear system as A = M − N, for a nonsingular matrix M ∈ Rn×n and a
matrix N ∈ Rn×n, together with an initial guess x(0) of the solution, one step of this general
method reads

Mx(k+1) = Nx(k) + b. (4.14)

For any choice of splitting, the exact solution x∗ to the linear system is a fixed point of this
iteration, in the sense that if x(0) = x∗, then x(k) = x∗ for all k > 0. Equation (4.14) is
a linear system with matrix M, unknown x(k+1), and right-hand side Nx(k) + b. There is a
compromise between the cost of a single step and the speed of convergence of the method.
In the extreme case where M = A and N = 0, the method converges to the exact solution
in one step, but performing this step amounts to solving the initial problem. In practice, in
order for the method to be useful, the linear system (4.14) should be relatively simple to solve.
Concretely, this means that the matrix M should be diagonal, triangular, block diagonal, or
block triangular. The error e(k) and residual r(k) at iteration k are defined as follows:

e(k) = x(k) − x∗, r(k) = Ax(k) − b.

Convergence of the splitting method

Before presenting concrete examples of splitting methods, we obtain a necessary and sufficient
condition for the convergence of (4.14) for any initial guess x(0).

Proposition 4.10 (Convergence). The splitting method (4.14) converges for any initial
guess x(0) if and only if ρ(M−1N) < 1. In addition, for any ε > 0 there exists K > 0

such that
∀k > K, ‖e(k)‖ 6

(
ρ(M−1N) + ε

)k‖e(0)‖. (4.15)

Proof. Let x∗ denote the solution to the linear system. Since Mx∗ − Nx∗ = b, we have

M(x(k+1) − x∗) = N(x(k) − x∗).

92

Chapter 4. Solution of linear systems of equation

Using the assumption that M is nonsingular, we obtain that the error satisfies the equation

e(k+1) = (M−1N)e(k).

Applying this equality repeatedly, we deduce that

e(k) = (M−1N)e(k−1) = · · · = (M−1N)ke(0). (4.16)

Proof that ρ(M−1N) < 1 is necessary for convergence. We prove the equivalent claim that
if ρ(M−1N) > 1, then there exists x(0) such that the method is not convergent. Indeed, assume
that x(0) = x∗ + v(0), where v(0) is the eigenvector of M−1N associated with the eigenvalue of
largest modulus. Then e(0) = v(0) and the right-hand side of (4.16) does not converge to 0 in
the limit as k → 0, because

‖(M−1N)ke(0)‖ = ρ(M−1N)k‖v(0)‖ > ‖v(0)‖.

Thus, the condition ρ(M−1N) < 1 is necessary to ensure convergence for all initial guess x(0).

Proof that ρ(M−1N) < 1 is sufficient for convergence. In order to show that the condition
is also sufficient, note that by (4.16)

∀k > 0, ‖e(k)‖ 6 ‖(M−1N)k‖‖e(0)‖.

By Gelfand’s formula, proved in Proposition A.9 of Appendix A, it holds that

lim
k→∞
‖(M−1N)k‖

1
k = ρ(M−1N). (4.17)

Therefore, we deduce that if ρ(M−1N) < 1, then ‖(M−1N)k‖ → 0 and so e(k) → 0. In addition,
it follows from (4.17) that for all ε > 0 there is K ∈ N such that

∀k > K, ‖(M−1N)k‖
1
k 6 ρ(M−1N) + ε.

Rearranging this inequality gives (4.15).

At this point, it is natural to wonder whether there exist sufficient conditions on the matrix A
such that the inequality ρ(M−1N) < 1 is satisfied, which is best achieved on a case by case basis.
In the next sections, we present four instances of splitting methods. For each of them, we obtain
a sufficient condition for convergence. We are particularly interested in the case where the
matrix A is symmetric (or Hermitian) and positive definite, which often arises in applications,
and in the case where A is strictly row or column diagonally dominant. We recall that a matrix
A is said to be row or column diagonally dominant if, respectively,

|aii| >
∑
j 6=i

|aij | ∀i or |ajj | >
∑
i 6=j

|aij | ∀j.

93

Chapter 4. Solution of linear systems of equation

Richardson’s method

Arguably the simplest splitting of the matrix A is given by A = 1
ω I −

(
1
ω I − A

)
, for some

parameter ω ∈ R, which leads to Richardson’s method:

x(k+1) = x(k) + ω(b− Ax(k)). (4.18)

In this case the spectral radius which enters in the asymptotic rate of convergence is given by

ρ(M−1N) = ρ

(
ω

(
1

ω
I− A

))
= ρ
(
I− ωA

)
The eigenvalues of the matrix I− ωA are given by 1− ωλi, where (λi)16i6L are the eigenvalues
of A. Therefore, the spectral radius is given by

ρ(M−1N) = max
16i6L

|1− ωλi|.

If the eigenvalues of the matrix A do not either (i) all have a positive real part or (ii) all have
a negative real part, then

∀ω ∈ R, max
16i6L

|1− ωλi| > 1.

In other words, by Proposition 4.10, there is for any choice of ω ∈ R some x(0) such that
Richardson’s method is non-convergent. Therefore, in order for convergence to hold for all x(0),
it is necessary that the eigenvalues of A either all have a positive real part, or all have a negative
real part. We focus in the next paragraph on the latter case and we also assume, for simplicity,
that A is symmetric.

Case of symmetric positive definite A. If the matrix A is symmetric and positive definite, the
eigenvalues of A are all real and positive, and it is possible to explicitly calculate the optimal
value of ω for convergence. In order for convergence to be as fast as possible, the spectral radius
of M−1N should be as small as possible, in view of Proposition 4.10. Denoting by λmin and λmax

the minimum and maximum eigenvalues of A, it is not difficult to show that

ρ(M−1N) = max
16i6L

|1− ωλi| = max
{
|1− ωλmin|, |1− ωλmax|

}
.

The maximum is minimized when its two arguments are equal, i.e. when 1−ωλmin = ωλmax−1.
From this we deduce the optimal value of ω and the associated spectral radius:

ωopt =
2

λmax + λmin
, ρopt = 1− 2λmin

λmax + λmin
=

λmax − λmin
λmax + λmin

=
κ2(A)− 1

κ2(A) + 1
.

We observe that the smaller the condition number of the matrix A, the better the asymptotic
rate of convergence.

Remark 4.2 (Link to optimization). In the case where A is symmetric and positive definite,
the Richardson update (4.18) may be viewed as a step of the steepest descent algorithm for

94

Chapter 4. Solution of linear systems of equation

the function f(x) = 1
2x

TAx− bTx:

x(k+1) = x(k) − ω∇f(x(k)). (4.19)

The gradient of this function is ∇f(x) = Ax − b, and its Hessian matrix is A. Since the
Hessian matrix is positive definite, the function is convex and attains its global minimum
when ∇f is zero, i.e. when Ax = b.

Jacobi’s method

In Jacobi’s method, the matrix M in the splitting is the diagonal matrix D with the same entries
as those of A on the diagonal. We denote by L and U the lower and upper triangular parts of A,
without the diagonal. One step of the method reads

Dx(k+1) = (D− A)x(k) + b = −(L + U)x(k) + b (4.20)

Since the matrix D on the left-hand side is diagonal, this linear system with unknown x(k+1) is
very simple to solve. The equation (4.20) can be rewritten as

a11x
(k+1)
1 + a12x

(k)
2 + · · ·+ a1nx

(k)
n = b1

a21x
(k)
1 + a22x

(k+1)
2 + · · ·+ a2nx

(k)
n = b2

...

an1x
(k)
1 + an2x

(k)
2 + · · ·+ annx

(k+1)
n = bn.

The updates for each of the entries of x(k+1) are independent, and so the Jacobi method lends
itself well to parallel implementation. The computational cost of one iteration, measured in
number of floating point operations required, scales as O(n2) if A is a full matrix, or O(nk)
if A is a sparse matrix with k nonzero elements per row on average. It is simple to prove the
convergence of Jacobi’s method is the case where A is diagonally dominant.

Proposition 4.11. Assume that A is strictly (row or column) diagonally dominant. Then it
holds that ρ(M−1N) < 1 for the Jacobi splitting.

Proof. Assume that λ is an eigenvalue of M−1N and v is the associated unit eigenvector. Then

M−1Nv = λv ⇔ Nv = λMv ⇔ (N− λM)v = 0.

In the case of Jacobi’s splitting, this is equivalent to

−(L + λD + U)v = 0.

If |λ| > 1, then the matrix on the left-hand side of this equation is diagonally dominant and
thus invertible (see Exercise 4.9). Therefore v = 0, but this is a contradiction because v is
vector of unit norm. Consequently, all the eigenvalues are bounded from above strictly by 1 in
modulus.

95

Chapter 4. Solution of linear systems of equation

Gauss–Seidel’s method

In Gauss Seidel’s method, the matrix M in the splitting is the lower triangular part of A,
including the diagonal. One step of the method then reads

(L + D)x(k+1) = −Ux(k) + b (4.21)

The system is solved by forward substitution. The equation (4.21) can be rewritten equivalently
as 

a11x
(k+1)
1 + a12x

(k)
2 + a13x

(k)
3 + · · ·+ a1nx

(k)
n = b1

a21x
(k+1)
1 + a22x

(k+1)
2 + a23x

(k)
3 + · · ·+ a2nx

(k)
n = b2

a32x
(k+1)
1 + a32x

(k+1)
2 + a33x

(k+1)
3 + · · ·+ a3nx

(k)
n = b3

...

an1x
(k+1)
1 + an2x

(k+1)
2 + an3x

(k+1)
3 + · · ·+ annx

(k+1)
n = bn.

Given x(k), the first entry of x(k+1) is obtained from the first equation. Then the value of the
second entry is obtained from the second equation, etc. Unlike Jacobi’s method, the Gauss–
Seidel method is sequential and the entries of x(k+1) cannot be updated in parallel.

It is possible to prove the convergence of the Gauss–Seidel method in particular cases. For
example, the method converges if A is strictly diagonally dominant. Proving this, using an
approach similar to that in the proof of Proposition 4.11, is the goal of Exercise 4.18. It is also
possible to prove convergence when A is Hermitian and positive definite. We show this in the
next section for the relaxation method, which generalizes the Gauss–Seidel method.

Relaxation method

The relaxation method generalizes the Gauss–Seidel method. It corresponds to the splitting

A =

(
D
ω

+ L
)
−
(
1− ω

ω
D− U

)
. (4.22)

When ω = 1, this is simply the Gauss–Seidel splitting. The idea of the relaxation method is
that, by letting ω be a parameter that can differ from 1, faster convergence can be achieved.
This intuition will be verified later. The equation (4.14) for this splitting can be rewritten
equivalently as

a11
(
x
(k+1)
1 − x

(k)
1

)
= −ω

(
a11x

(k)
1 + a12x

(k)
2 + · · ·+ a1nx

(k)
n − b1

)
a22
(
x
(k+1)
2 − x

(k)
2

)
= −ω

(
a21x

(k+1)
1 + a22x

(k)
2 + · · ·+ a2nx

(k)
n − b2

)
...

ann
(
x(k+1)
n − x(k)n

)
= −ω

(
an1x

(k+1)
1 + an2x

(k+1)
2 + · · ·+ annx

(k)
n − bn

)
.

The coefficient on the right-hand side is larger than in the Gauss–Seidel method if ω > 1, and
smaller if ω < 1. These regimes are called over-relaxation and under-relaxation, respectively.

To conclude this section, we establish a sufficient condition for the convergence of the re-

96

Chapter 4. Solution of linear systems of equation

laxation method, and also of the Gauss–Seidel method as a particular case when ω = 1, when
the matrix A is Hermitian and positive definite. To this end, we begin by showing the following
preparatory result, which concerns a general splitting A = M− N.

Proposition 4.12. Let A be Hermitian and positive definite. If the Hermitian matrix M∗+N
is positive definite, then ρ(M−1N) < 1.

Proof. First, notice that M∗ + N is indeed Hermitian because

(M∗ + N)∗ = M + N∗ = A + N + N∗.

We will show that ‖M−1N‖A < 1, where ‖•‖A is the matrix norm induced by the following norm
on vectors:

‖x‖A :=
√
x∗Ax.

Showing that this indeed defines a vector norm is the goal of Exercise 4.11. Since N = M− A,
it holds that ‖M−1N‖A = ‖I−M−1A‖A, and so

‖M−1N‖A = sup
{
‖x−M−1Ax‖A : ‖x‖A 6 1

}
.

Take x ∈ Rn with ‖x‖A 6 1 and let y = M−1Ax. We calculate

‖x−M−1Ax‖2A = x∗Ax− y∗Ax− x∗Ay + y∗Ay

= x∗Ax− y∗MM−1Ax− (M−1Ax)∗M∗y + y∗Ay

= x∗Ax− y∗My − y∗M∗y + y∗(M− N)y

= x∗Ax− y∗(M∗ + N)y 6 1− y∗(M∗ + N)y < 1,

where we used in the last inequality the assumption that M∗ + N is positive definite. This
inequality holds true for all x ∈ Rn with ‖x‖A = 1, and so we conclude that ‖M−1N‖A < 1,
which implies that ρ(M−1N) < 1.

As a corollary, we obtain a sufficient condition for the convergence of the relaxation method.

Corollary 4.13. Assume that A is Hermitian and positive definite. Then the relaxation method
converges if ω ∈ (0, 2).

Proof. For the relaxation method, we have

M + N∗ =

(
D
ω

+ L
)
+

(
1− ω

ω
D− U

)∗
.

Since A is Hermitian, it holds that D∗ = D and U∗ = L. Therefore,

M + N∗ =
2− ω

ω
D.

97

Chapter 4. Solution of linear systems of equation

The diagonal elements of D are all positive, because A is positive definite. (Indeed, if there
was an index i such that dii 6 0, then it would hold that eTi Aei = dii 6 0, contradicting the
assumption that A is positive definite.) We deduce that M + N∗ is positive definite if and only
if ω ∈ (0, 2). We can then conclude the proof by using Proposition 4.12.

Note that Corollary 4.13 implies as a particular case the convergence of the Gauss–Seidel
method when A is Hermitian and positive definite. The condition ω ∈ (0, 2) is in fact necessary
for the convergence of the relaxation method, not only in the case of a Hermitian positive
definite matrix A but in general.

Proposition 4.14 (Necessary condition for the convergence of the relaxation method). Let
A ∈ Cn×n be an invertible matrix, and let A = Mω −Nω denote the splitting of the relaxation
method with parameter ω. It holds that

∀ω 6= 0, ρ(M−1
ω Nω) > |ω − 1|.

Proof. We recall the following facts:

• the determinant of a product of matrices is equal to the product of the determinants.

• the determinant of a triangular matrix is equal to the product of its diagonal entries;

• the determinant of a matrix is equal to the product of its eigenvalues, to the power of
their algebraic multiplicity. This can be shown from the previous two items, by passing
to the Jordan normal form.

Therefore, we have that

det(M−1
ω Nω) = det(Mω)

−1 det(Nω) =
det
(
1−ω
ω D− U

)
det
(D
ω + L

) = (1− ω)n.

Since the determinant on the left-hand side is the product of the eigenvalues of M−1
ω Nω, it is

bounded from above in modulus by ρ(M−1
ω Nω)

n, and so we deduce ρ(M−1
ω Nω)

n > |1−ω|n. The
statement then follows by taking the n-th root.

Comparison between Jacobi and Gauss–Seidel for tridiagonal matrices �

For tridiagonal matrices, the convergence rate of the Jacobi and Gauss–Seidel methods satisfy
an explicit relation, which we prove in this section. We denote the Jacobi and Gauss–Seidel
splittings by MJ −NJ and MG −NG , respectively, and use the following notation for the entries
of the matrix A: 

a1 b1

c1
.
. bn−1

cn−1 an

 .

98

Chapter 4. Solution of linear systems of equation

Before presenting and proving the result, notice that for any µ 6= 0 it holds that


µ

µ2

. . .
µn

A


µ−1

µ−2

. . .
µ−n

 =


a1 µ−1b1

µc1
.
. µ−1bn−1

µcn−1 an

 . (4.23)

Proposition 4.15. Assume that A is tridiagonal with nonzero diagonal elements, so that
both MJ = D and MG = L + D are invertible. Then

ρ(M−1
G NG) = ρ(M−1

J NJ)
2

Proof. If λ is an eigenvalue of M−1
G NG with associated unit eigenvector v, then

M−1
G NGv = λv ⇔ NGv = λMGv ⇔ (NG − λMG)v = 0.

For fixed λ, there exists a nontrivial solution v to the last equation if and only if

pG(λ) := det(NG − λMG) = −det(λL + λD + U) = 0.

Likewise, λ is an eigenvalue of M−1
J NJ if and only if

pJ (λ) := det(NJ − λMJ) = −det(L + λD + U) = 0.

Now notice that

pG(λ
2) = −det

(
λ2L + λ2D + U

)
= −λn det

(
λL + (λD) + λ−1U

)
.

Applying (4.23) with µ = λ 6= 0, we deduce

pG(λ
2) = −λn det

(
L + λD + U

)
= λnpJ (λ)

It is clear that this relation is true also if λ = 0. Consequently, it holds that if λ is an eigenvalue
of the matrix M−1

J NJ then λ2 is an eigenvalue of M−1
G NG . Conversely, if λ is an eigenvalue

of M−1
G NG , then the two square roots of λ are eigenvalues of M−1

J NJ .

If a matrix A is tridiagonal and Toeplitz, i.e. if it is of the form
a b

c
.
. b

c a

 ,

99

Chapter 4. Solution of linear systems of equation

then it is possible to prove that the eigenvalues of A are given by

λk = a+ 2
√
bc cos

(
kπ

n+ 1

)
, k = 1, . . . , n. (4.24)

In this case, the spectral radius of M−1
J NJ can be determined explicitly.

Monitoring the convergence

In practice, we have access to the residual r(k) = Ax(k) − b at each iteration, but not to the
error e(k) = x(k) −x∗, as calculating the latter would require to know the exact solution of the
problem. Nevertheless, the two are related by the equation

r(k) = Ae(k) ⇔ e(k) = A−1r(k).

Therefore, it holds that ‖e(k)‖ 6 ‖A−1‖‖r(k)‖. Likewise, the relative error satisfies

‖e(k)‖
‖x∗‖

=
‖A−1r(k)‖
‖A−1b‖

,

and since ‖b‖ = ‖AA−1b‖ 6 ‖A‖‖A−1b‖, we deduce

‖e(k)‖
‖x∗‖

6 κ(A)‖r
(k)‖
‖b‖

.

The fraction on the right-hand side is the relative residual. If the system is well conditioned,
that is if κ(A) is close to one, then controlling the relative residual enables a good control of
the relative error.

Stopping criterion

In practice, several criteria can be employed in order to decide when to stop iterating. Given a
small number ε (unrelated to the machine epsilon in Chapter 1), the following alternatives are
available:

• Stop when ‖r(k)‖ 6 ε. The downside of this approach is that it is not scaling invariant:
when used for solving the following rescaled system

kAx = kb, k 6= 1,

a splitting method with rescaled initial guess kx(0) will require a number of iterations
that depends on k: fewer if k � 1 and more if k � 1. In practice, controlling the relative
residual and the relative error is often preferable.

• Stop when ‖r(k)‖/‖r(0)‖ 6 ε. This criterion is scaling invariant, but the number of
iterations is dependent on the quality of the initial guess x(0).

• Stop when ‖r(k)‖/‖b‖. This criterion is generally the best, because it is both scaling
invariant and the quality of the final iterate is independent of that of the initial guess.

100

Chapter 4. Solution of linear systems of equation

4.3.2 The conjugate gradient method

As already mentioned in Remark 4.2, when the matrix A ∈ Rn×n in the linear system Ax = b

is symmetric and positive definite, the system can be interpreted as a minimization problem for
the function

f(x) =
1

2
xTAx− bTx. (4.25)

The fact that the exact solution x∗ to the linear system is the unique minimizer of this function
appears clearly when rewriting f as follows:

f(x) =
1

2
(x− x∗)

TA(x− x∗)−
1

2
xT
∗ Ax∗. (4.26)

The second term is constant with x, and the first term is strictly positive if x−x∗ 6= 0, because A
is positive definite. We saw that Richardson’s method can be interpreted as a steepest descent
with fixed step size,

x(k+1) = x(k) − ω∇f(x(k)).

In this section, we will present and study other methods for solving the linear system (4.1)
which can be viewed as optimization methods. Since A is symmetric, it is diagonalizable and
the function f can be rewritten as

f(x) =
1

2
(x− x∗)

TQDQT (x− x∗)−
1

2
xT
∗ Ax∗

=
1

2
(QTe)TD(QTe)− 1

2
xT
∗ Ax∗, e = x− x∗.

Therefore, we have that

f(x) =
1

2

n∑
i=1

λiη
2
i −

1

2
xT
∗ Ax∗, η = QT (x− x∗),

where (λi)16i6n are the diagonal entries of D. This shows that f is a paraboloid after a change
of coordinates.

Steepest descent method

The steepest descent method is more general than Richardson’s method in the sense that the
step size changes from iteration to iteration and the method is not restricted to quadratic
functions of the form (4.25). Each iteration is of the form

x(k+1) = x(k) − ωk∇f(x(k)).

It is natural to wonder whether the step size ωk can be fixed in such a way that f(x(k+1))

is as small as possible. For the case of the quadratic function (4.25), this value of ωk can be
calculated explicitly for a general search direction d, and in particular also when d = ∇f(x(k)).

101

Chapter 4. Solution of linear systems of equation

We calculate that

f(x(k+1)) = f
(
x(k) − ωkd

)
=

1

2

(
x(k) − ωkd

)T
A
(
x(k) − ωkd

)
−
(
x(k) − ωkd

)T
b

= f
(
x(k)

)
+

ω2
k

2
dTAd− ωkd

Tr(k). (4.27)

When viewed as a function of the real parameter ωk, the right-hand side is a convex quadratic
function. It is minimized when its derivative is equal to zero, i.e. when

ωkd
TAd− dT (Axk − b) = 0 ⇒ ωk =

dTr(k)

dTAd
. (4.28)

The steepest descent algorithm with step size obtained from this equation is summarized in Al-
gorithm 3 below. By construction, the function value f(x(k)) is nonincreasing with k, which is
equivalent to saying that the error x− x∗ is nonincreasing in the norm x 7→

√
xTAx. In order

to quantify more precisely the decrease of the error in this norm, we introduce the notation

Ek = ‖x− x∗‖2A := (x(k) − x∗)
TA(x(k) − x∗) = (Ax(k) − b)TA−1(Ax(k) − b).

We begin by showing the following auxiliary lemma.

Lemma 4.16 (Kantorovich inequality). Let A ∈ Rn×n be a symmetric and positive definite
matrix, and let λ0 6 . . . 6 λn denote its eigenvalues. Then for all nonzero z ∈ Rn it holds that

(zTz)2

(zTAz)(zTA−1z)
>

4λ1λn

(λ1 + λn)2
.

Proof. By the AM-GM (arithmetic mean-geometric mean) inequality, it holds for all t > 0 that√
(zTAz)(zTA−1z) =

√
(tzTAz)(t−1zTA−1z) 6

1

2

(
tzTAz + 1

t
zTA−1z

)
=

1

2
zT

(
tA +

1

t
A−1

)
z.

The matrix on the right-hand side is also symmetric and positive definite, with eigenvalues
equal to tλi + (tλi)

−1. Therefore, we deduce

∀t > 0,
√

(zTAz)(zTA−1z) 6
1

2

(
max

i∈{1,...,n}
tλi + (tλi)

−1

)
zTz. (4.29)

The function x 7→ x + x−1 is convex, and so over any closed interval [xmin, xmax] it attains its
maximum either at xmin or at xmax. Consequently, it holds that(

max
i∈{1,...,n}

tλi + (tλi)
−1

)
= max

{
tλ1 +

1

tλ1
, tλn +

1

tλn

}
.

In order to obtain the best possible bound from (4.29), we should let t be such that the maximum

102

Chapter 4. Solution of linear systems of equation

is minimized, which occurs when the two arguments of the maximum are equal:

tλ1 +
1

tλ1
= tλn +

1

tλn
⇒ t =

1√
λ1λn

.

For this value of t, the maximum in (4.29) is equal to√
λ1

λn
+

√
λn

λ1
.

By substituting this expression in (4.29) and rearranging, we obtain the statement.

We are now able to prove the convergence of the steepest descent method.

Theorem 4.17 (Convergence of the steepest descent method). It holds that

Ek+1 6

(
κ2(A)− 1

κ2(A) + 1

)2

Ek.

Proof. Substituting x(k+1) = x(k) − ωkd in the expression for Ek+1, we obtain

Ek+1 = (x(k) − ωkd− x∗)
TA(x(k) − ωkd− x∗)

= Ek − 2ωkd
Tr(k) + ω2

kd
TAd

= Ek −
(dTd)2

dTAd
=

(
1− (dTd)2

(dTAd)(dTA−1d)

)
Ek,

Using the Kantorovich inequality, we have

Ek+1 6

(
1− 4λ1λn

(λ1 + λn)2

)
Ek 6

(
λ1 − λn

λ1 + λn

)2

Ek =

(
κ2(A)− 1

κ2(A) + 1

)2

Ek.

We immediately deduce the statement from this inequality.

Algorithm 3 Steepest descent method
1: Pick ε and initial x
2: r ← Ax− b
3: while ‖r‖ > ε‖b‖ do
4: d← r
5: ω ← dTr/dTAd
6: x← x− ωd
7: r ← Ax− b
8: end while

Preconditioned steepest descent

We observe from Theorem 4.17 that the convergence of the steepest descent method is faster
when the condition number of the matrix A is low. This naturally leads to the following question:
can we reformulate the minimization of f(x) in (4.25) as another optimization problem which

103

Chapter 4. Solution of linear systems of equation

is of the same form but involves a matrix with a lower condition number, thereby providing
scope for faster convergence? In order to answer this question, we consider a linear change of
coordinates y = T−1x, where T is an invertible matrix, and we define

f̃(y) = f(Ty) = 1

2
yT (TTAT)y − (TTb)Ty. (4.30)

This function is of the same form as f in (4.25), with the matrix Ã := TTAT instead of A
and the vector b̃ := TTb instead of b. Its minimizer is y∗ = T−1x∗. The steepest descent
algorithm can be applied to (4.30) and, from an approximation y(k) of the minimizer y∗, an
approximation x(k) of x∗ is obtained by the change of variable x(k) = Ty(k). This approach
is called preconditioning. By Theorem 4.17, the steepest descent method satisfies the following
error estimate when applied to the function (4.30):

Ek+1 6

(
κ2(TTAT)− 1

κ2(TTAT) + 1

)2

Ek, Ek = (y(k) − y∗)
T Ã(y(k) − y∗),

= (x(k) − x∗)
TA(x(k) − x∗).

Consequently, the convergence is faster than that of the usual steepest descent method if
κ2(TTAT) < κ2(A). The optimal change of coordinates is given by T = C−T , where C is
the factor of the Cholesky factorization of A as CCT . Indeed, in this case

TTAT = C−1CCTC−T = I ⇒ κ2(TTAT) = 1,

and the method converges in a single iteration! However, this iteration amounts to solving the
linear system by direct Cholesky factorization of A. In practice, it is usual to define T from an
approximation of the Cholesky factorization, such as the incomplete Cholesky factorization.

To conclude this section, we demonstrate that the change of variable from x to y need not
be performed explicitly in practice. Indeed, one step of the steepest descent algorithm applied
to function f̃ reads

y(k+1) = y(k) − ω̃k(Ãy(k) − b̃), ω̃k =
(Ãy(k) − b̃)T (Ãy(k) − b̃)

(Ãy(k) − b̃)T Ã(Ãy(k) − b̃)
.

Letting x(k) = Ty(k), this equation can be rewritten as the following iteration:

x(k+1) = x(k) − ω̃kdk, ω̃k =
dT
k r

(k)

dT
k Adk

, dk = TTT(Ax(k) − b).

A comparison with (4.28) shows that the step size ω̃k is such that f(x(k+1)) is minimized. This
reasoning shows that the preconditioned conjugate gradient method amounts to choosing the
direction d(k) = TTTr(k) at each iteration, instead of just r(k), as is apparent in Algorithm 4.
It is simple to check that −d(k) is a descent direction for f :

−∇f(x)T
(
TTT(Ax− b)

)
= −

(
T(Ax− b)

)T (T(Ax− b)
)
6 0.

104

Chapter 4. Solution of linear systems of equation

Algorithm 4 Preconditioned steepest descent method
1: Pick ε, invertible T and initial x
2: r ← Ax− b
3: while ‖r‖ > ε‖b‖ do
4: d← TTTr
5: ω ← dTr/dTAd
6: x← x− ωd
7: r ← Ax− b
8: end while

Conjugate directions method

Definition 4.6 (Conjugate directions). Let A be a symmetric positive definite matrix. Two
vectors d1 and d2 are called A-orthogonal or conjugate with respect to A if dT

1 Ad2 = 0, i.e.
if they are orthogonal for the inner product 〈x,y〉A = xTAy.

Assume that d0, . . . ,dn−1 are n pairwise A-orthogonal nonzero directions. By Exercise 4.19,
these vectors are linearly independent, and so they form a basis of Rn. Consequently, for any
initial guess x(0), the vector x(0) − x∗, where x∗ is the solution to the linear system Ax = b,
can be decomposed as

x(0) − x∗ = α0d0 + · · ·+ αn−1dn−1.

Taking the 〈•, •〉A inner product of both sides with dk, with k ∈ {0, . . . , n − 1}, we obtain an
expression for the scalar coefficient αk:

αk =
dT
k A(x(0) − x∗)

dT
k Adk

=
dT
k (Ax(0) − b)

dT
k Adk

.

Therefore, calculating the expression of the coefficient does not require to know the exact
solution x∗, but only the residual r(0)! Given conjugate directions, the exact solution can be
obtained as

x∗ = x(0) −
n−1∑
k=0

αkdk, αk =
dT
k r

(0)

dT
k Adk

. (4.31)

If x(0) = 0, then r(0) = −b and this equations gives that

x∗ =

n−1∑
k=0

dT
k b

dT
k Adk

dk =

(
n−1∑
k=0

dkd
T
k

dT
k Adk

)
b,

which implies that that the inverse of A is given by

A−1 =
n−1∑
k=0

dkd
T
k

νk
, νk = dT

k Adk.

The conjugate directions method is illustrated in Algorithm 5. Its implementation is very similar
to that of the steepest descent method, the only difference being that the descent direction at

105

Chapter 4. Solution of linear systems of equation

iteration k is given by dk instead of r(k). In particular, the step size at each iteration is such
that f(x(k+1)) is minimized.

Algorithm 5 Conjugate directions method
1: Assuming d0, . . . ,dn−1 are given.
2: Pick initial x(0)

3: for k in {0, . . . , n− 1} do
4: r(k) = Ax(k) − b
5: ωk = dT

k r
(k)/dT

k Adk

6: x(k+1) = x(k) − ωkdk

7: end for

Let us now establish the connection between the Algorithm 5 and (4.31), which may not
be immediately apparent because (4.31) involves only the initial residual Ax(0) − b, while the
residual at the current iteration r(k) is used in the algorithm.

Proposition 4.18 (Convergence of the conjugate directions method). The vector x(k) ob-
tained after k iterations of the conjugate directions method is given by

x(k) = x(0) −
k−1∑
i=0

αidi, αi =
dT
i r

(0)

dT
i Adi

. (4.32)

In particular, the method converges in at most n iterations.

Proof. Let us denote by y(k) the solution obtained after k steps of Algorithm 5. Our goal is to
show that y(k) coincides with x(k) defined in (4.32). The result is trivial for k = 0. Reasoning
by induction, we assume that it is true up to k. Then performing step k + 1 of the algorithm
gives

y(k+1) = y(k) − ωkdk, ωk =
dT
k r

(k)

dT
k Adk

.

On the other hand, it holds from (4.32) that

x(k+1) = x(k) − αkdk, αk =
dT
k r

(0)

dT
k Adk

.

By the induction hypothesis, it holds that y(k) = x(k), so in order to prove that y(k+1) = x(k+1),
it is sufficient to show that ωk = αk, i.e. that

dT
k r

(k) = dT
k r

(0) ⇔ dT
k (r

(k) − r(0)) = 0 ⇔ dT
k A(x(k) − x(0)) = 0.

The latter equality is obvious from the A-orthonormality of the directions.

Since ωk in Algorithm 5 coincides with the expression in (4.28), the conjugate directions
algorithm satisfies the following “local optimization” property: the iterate x(k+1) minimizes f

on the straight line ω 7→ x(k) − ωdk. In contrast with the steepest descent method, however,
the conjugate directions method also satisfies the following stronger property.

106

Chapter 4. Solution of linear systems of equation

Proposition 4.19 (Optimality of the conjugate directions method). The iterate x(k) is the
minimizer of f over the set x(0) + Bk, where Bk = Span{d0, . . . ,dk−1}.

Proof. By (4.31), it holds that

x∗ = x(0) −
n−1∑
i=0

αidi, αi =
dT
i r

(0)

dT
i Adi

On the other hand, any vector y ∈ x(0) + Bk can be expanded as

y = x(0) − β0d0 − · · · − βk−1dk−1.

Employing these two expressions, the formula for f in (4.26), and the A-orthogonality of the
directions, we obtain

f(y) =
1

2
(y − x∗)

TA(y − x∗)−
1

2
xT
∗ Ax∗

=
1

2

k−1∑
i=0

(βi − αi)
2dT

i Adi +
1

2

n−1∑
i=k

α2
id

T
i Adi −

1

2
xT
∗ Ax∗

This is minimized when βi = αi for all i ∈ {0, . . . , k − 1}, in which case y coincides with the
k-th iterate x(k) of the conjugate directions method in view of Proposition 4.18.

Remark 4.3. Let ‖•‖A denote the norm induced by the inner product 〈•, •〉A. Since

‖x(k) − x∗‖A =
√

2f(x(k)) + xT
∗ Ax∗,

Proposition 4.19 shows that x(k) minimizes the norm ‖x(k)−x∗‖A over x(0)+Bk. This is not
surprising since, by construction, the vector x(k)−x∗ is the orthogonal projection of x(0)−x∗

onto B⊥k , for the inner product 〈•, •〉A.

A corollary of (4.19) is that the gradient of f at x(k), i.e. the residual r(k) = Ax(k) − b, is
orthogonal to any vector in {d0, . . . ,dk−1} for the usual Euclidean inner product. This can also
be checked directly from the formula

x(k) − x∗ =
n−1∑
i=k

αidi, αi =
dT
i r

(0)

dT
i Adi

,

which follows directly from Proposition 4.18. Indeed, it holds that

∀j ∈ {0, . . . , k − 1}, dT
j r

(k) = djA(x(k) − x∗) =

n−1∑
i=k

αid
T
j di = 0. (4.33)

107

Chapter 4. Solution of linear systems of equation

The conjugate gradient method

In the previous section, we showed that, given n conjugate directions, the solution to the
linear system Ax = b can be obtained in a finite number of iterations using Algorithm 5. The
conjugate gradient method can be viewed as a particular case of the conjugate directions method.
Instead of assuming that the conjugate directions are given, they are constructed iteratively
as part of the algorithm. Given an initial guess x(0), the first direction is the residual r(0),
which coincides with the gradient of f at x(0). The directions employed for the next iterations
are obtained by applying the Gram-Schmidt process to the residuals. More precisely, given
conjugate directions d0, . . . ,dk−1, and letting x(k) denote the k-th iterate of the conjugate
directions method, the direction dk is obtained by

dk = r(k) −
k−1∑
i=0

dT
i Ar(k)

dT
i Adi

di, r(k) = Ax(k) − b. (4.34)

It is simple to check that dk is indeed A-orthogonal to di for i ∈ {0, . . . , k − 1}, and that dk is
nonzero if r(k) is nonzero. To prove the latter claim, we can take the Euclidean inner product
of both sides with r(k) and use Proposition 4.19 to deduce that

dT
k r

(k) = (r(k))Tr(k) > 0. (4.35)

Note also that since the directions are obtained by applying the Gram–Schmidt process to the
residuals, it holds that

∀k ∈ {0, . . . , n− 1}, Bk+1 := Span {d0, . . . ,dk} = Span
{
r(0), . . . , r(k)

}
. (4.36)

The following result characterizes precisely the subspace Bk+1.

Proposition 4.20. Assume that ‖r(k)‖ 6= 0 for all k < m 6 n. Then it holds that

∀k ∈ {0, . . .m}, Span
{
r(0), r(1), . . . , r(k)

}
= Span

{
r(0),Ar(0), . . . ,Akr(0)

}
(4.37)

The subspace on the right-hand side is called a Krylov subspace.

Proof. The result is clear for k = 0. Reasoning by induction, we prove that if the result is true
up to k < m, then it is also true for k + 1. A simple calculation gives that

r(k+1) = A
(
x(k) − ωkdk

)
− b

= r(k) − ωkAdk. (4.38)

From (4.34), we deduce that

r(k+1) = r(k) − ωkA
(
r(k) −

k−1∑
i=0

dT
i Ar(k)

dT
i Adi

di

)
.

By (4.36) and the induction hypothesis, the bracketed expression on the right-hand side belongs

108

Chapter 4. Solution of linear systems of equation

to Bk+1, so the inclusion ⊂ in (4.37) is clear. The inclusion ⊃ then follows from the fact the
dimension of the subspace

Span {d0, . . . ,dk} = Span
{
r(0), . . . , r(k)

}
is equal to k + 1.

It appears from (4.34) that the cost of calculating a new direction grows linearly with the
iteration index. In fact, it turns out that only the last term in the sum is nonzero, and so the
cost of calculating a new direction does not grow with the iteration index k. Indeed, notice that
if i 6 k − 2, then

dT
i Ar(k) = (Adi)

TAr(k) = 0,

because Adi ∈ Bi+2 ⊂ Bk by Proposition 4.20, and r(k) orthogonal to Bk for the Euclidean inner
product by (4.33). This observation leads to Algorithm 6.

Algorithm 6 Conjugate gradient method

1: Pick initial x(0)

2: d0 = r(0) = Ax(0) − b
3: for k in {0, . . . , n− 1} do
4: if ‖r(k)‖ = 0 then
5: Stop
6: end if
7: ωk = dT

k r
(k)/dT

k Adk

8: x(k+1) = x(k) − ωkdk

9: r(k+1) = Ax(k+1) − b
10: βk = dT

k Ar(k+1)/dT
k Adk.

11: dk+1 = r(k+1) − βkdk.
12: end for

Although the conjugate gradient method converges in a finite number of iterations, perform-
ing n iterations for very large systems would require an excessive computational cost, and so it
is sometimes desirable to stop iterating when the residual is sufficiently small. To conclude this
section, we study the convergence of the method.

Theorem 4.21 (Convergence of the conjugate gradient method). The error for the conjugate
gradient method, measured as

Ek := (x(k) − x∗)
TA(x(k) − x∗),

satisfies the following inequality:

∀qk ∈ P(k), Ek+1 6 max
16i6n

(
1 + λiqk(λi)

)2
E0. (4.39)

Here P(k) is the vector space of polynomials of degree less than or equal to k.

109

Chapter 4. Solution of linear systems of equation

Proof. In view of Proposition 4.20, the iterate x(k+1) can be written as

x(k+1) = x(0) +
k∑

i=0

αiAir(0) = x(0) + pk(A)r(0),

where pk is a polynomial of degree k. By Proposition 4.19, pk is in fact the polynomial of
degree k such that f(x(k+1)) is minimized, and thus also Ek+1 by (4.26). Noting that

x(k+1) − x∗ = x(0) − x∗ + pk(A)r(0) = x(0) − x∗ + pk(A)A(x(0) − x∗)

=
(
I + Apk(A)

)
(x(0) − x∗),

we deduce that

∀qk ∈ P(k), Ek+1 6 (x(0) − x∗)
TA
(
I + Aqk(A)

)2
(x(0) − x∗).

In order to exploit this inequality, it is useful to diagonalize A as A = QDQT , for an orthogonal
matrix Q and a diagonal matrix D. Since qk(A) = Qqk(D)QT for all qk ∈ P(k), it holds that

∀qk ∈ P(k), Ek+1 =
(
QT (x(0) − x∗)

)TD
(
I + Dqk(D)

)2(QT (x(0) − x∗)
)

6 max
16i6n

(
1 + λiqk(λi)

)2 (QT (x(0) − x∗)
)TD

(
QT (x(0) − x∗)

)︸ ︷︷ ︸
E0

,

which completes the proof.

A corollary of Theorem 4.21 is that, if A has m 6 n distinct eigenvalues, then the conjugate
gradient method converges in at most m iterations. Indeed, in this case we can take

qm−1(λ) =
1

λ

(
(λ1 − λ) . . . (λm − λ)

λ1 . . . λm
− 1

)
.

It is simple to check that the right-hand side is indeed a polynomial, and that 1+λiqm−1(λi) = 0

for all eigenvalues of A.
In general, finding the polynomial that minimizes the right-hand side of (4.39) is not possible,

because the eigenvalues of A are unknown. However, it is possible to derive from this equation an
error estimate with an explicit dependence on the condition number κ = κ2(A).

Theorem 4.22. It holds that

∀k > 0, Ek 6 4

(√
κ− 1√
κ+ 1

)2(k+1)

E0,

Proof. Theorem 4.21 implies that

∀qk ∈ P(k), Ek+1 6 max
λ∈[λ1,λn]

(
1 + λqk(λ)

)2
E0,

110

Chapter 4. Solution of linear systems of equation

where λ1 and λn are the minimum and maximum eigenvalues of A. Notice that{
1 + λqk : qk ∈ P(k)

}
=
{
pk : pk ∈ P(k + 1) and pk(0) = 1

}
Therefore, it follows from Exercise C.7 that the right-hand side is minimized when

1 + λqk(λ) =
Tk+1

(
λn+λ1−2λ
λn−λ1

)
Tk+1

(
λn+λ1
λn−λ1

) , (4.40)

where Tk+1 is the Chebyshev polynomial of degree k+1, see (C.1). We recall that |Tk+1(x)| 6 1

for all x ∈ [−1, 1]. Consequently, by the expression of Chebyshev polynomials given in Exer-
cise C.3, the following inequality holds true for all λ ∈ [λ1, λn]:

∣∣1 + λqk(λ)
∣∣ 6 1

Tk+1

(
λn+λ1
λn−λ1

) = 2

((
r +

√
r2 − 1

)k+1
+
(
r −

√
r2 − 1

)k+1
)−1

,

= 2

((√
κ+ 1√
κ− 1

)k+1

+

(√
κ− 1√
κ+ 1

)k+1
)−1

.

where r = λn+λ1
λn−λ1

. Since the first term in the bracket converges to zero as k → ∞, it is
natural to bound this expression by keeping only the second term, which after simple algebraic
manipulations leads to

∀λ ∈ [λ1, λn],
∣∣1 + λqk(λ)

∣∣ 6 2

(√
κ− 1√
κ+ 1

)k+1

.

From this inequality, the statement of the theorem follows immediately.

4.4 Exercises

� Exercise 4.1. In the simple case where A is symmetric, find values of x, b and ∆b for
which the inequality (4.2) is in fact an equality?

� Exercise 4.2 (Inverse of Gaussian transformation). Prove the formula (4.8).

� Exercise 4.3. Prove that the product of two lower triangular matrices is lower triangular.

� Exercise 4.4. Assume that A ∈ Rn×n is positive definite, i.e. that

∀x ∈ Rn\{0n}, xTAx > 0.

Show that all the principal submatrices of A are nonsingular.

� Exercise 4.5. Implement the backward substitution algorithm for solving Ux = y. What is
the computational cost of the algorithm?

� Exercise 4.6. Compare the condition number of the matrices L and U with and without
partial pivoting. For testing, use a matrix with pseudo-random entries generated as follows

111

Chapter 4. Solution of linear systems of equation

import Random
Set the seed so that the code is deterministic
Random.seed!(0)
n = 1000 # You can change this parameter
A = randn(n, n)

Solution. See the Jupyter notebook for this chapter. 4

� Exercise 4.7. Write a code for calculating the Cholesky factorization of a symmetric positive
definite matrix A by comparing the entries of the product CCT with those of the matrix A. What
is the associated computational cost, and how does it compare with that of the LU factorization?
Extra credit: ... if your code is able to exploit the potential banded structure of the matrix
passed as argument for better efficiency. Specifically, your code will be tested with a matrix is
of the type BandedMatrix defined in the BandedMatrices.jl package, which you will need to
install. The following code can be useful for testing purposes.

import BandedMatrices
import LinearAlgebra

function cholesky(A)
m, n = size(A)
m != n && error("Matrix must be square")
Convert to banded matrix
B = BandedMatrices.BandedMatrix(A)
B.u != B.l && error("Matrix must be symmetric")
--> Your code comes here <--

end

n, u, l = 20000, 2, 2
A = BandedMatrices.brand(n, u, l)
A = A*A'
so that A is symmetric and positive definite (with probability 1).
C = @time cholesky(A)
LinearAlgebra.norm(C*C' - A, Inf)

For information, my code takes about 1 second to run with the parameters given here.

� Exercise 4.8 (Matrix square root). Let A ∈ Rn×n be a symmetric positive definite matrix.
Show that A has a positive definite square root, i.e. that there exists a symmetric matrix B such
that BB = A.

Solution. Since A is symmetric, there exist a diagonal matrix D and an orthogonal matrix Q
such that A = QDQT . Let D1/2 denote the diagonal matrix obtained by applying the square
root function to the entries of D, and notice that D1/2D1/2 = D. Then it holds that

A =
(
QD1/2QT

)(
QD1/2QT

)
.

112

Chapter 4. Solution of linear systems of equation

The matrix A1/2 := QD1/2QT is a square root of the matrix A, in the sense that A1/2A1/2, and
it is positive definite because the diagonal elements of D1/2 are strictly positive. 4

� Exercise 4.9. Show that if A is row or column diagonally dominant, then A is invertible.

� Exercise 4.10. Let T be a nonsingular matrix. Show that

‖A‖T := ‖T−1AT‖2

defines a matrix norm induced by a vector norm.

� Exercise 4.11. Let A ∈ Rn×n be a symmetric positive definite matrix. Show that the
functional

‖•‖A : x 7→
√
xTAx

defines a norm on Rn.

Solution. We need to prove that the three axioms of a norm are satisfied:

• (Positivity) Since A is positive definite, it holds that ‖x‖A > 0 for any x ∈ Rn \ {0}.

• (Homogeneity) It is clear that ‖cx‖A = |c|‖x‖A for any c ∈ R.

• (Triangle inequality) Let A1/2 denote the positive definite square root of A, which
exists by Exercise 4.8. Then

‖x‖A = ‖A1/2x‖2.

The triangle inequality for ‖•‖A then follows from that for ‖•‖2:

‖x+ y‖A = ‖A1/2x+ A1/2y‖2 6 ‖A1/2x‖+ ‖A1/2y‖2 = ‖x‖A + ‖y‖A.

Another option for solving this exercise is to show that

〈x,y〉A := xT Ay

defines an inner product, with induced norm given by ‖•‖A. 4

� Exercise 4.12. Show that the residual satisfies the equation

r(k+1) = NM−1r(k) = (I− AM−1)r(k).

� Exercise 4.13. Show that, if A and B are two square matrices, then ρ(AB) = ρ(BA).

� Exercise 4.14. Is ρ(•) a norm? Prove or disprove.

� Exercise 4.15. Prove that, if A is a diagonal matrix, then

‖A‖1 = ‖A‖2 = ‖A‖∞ = ρ(A).

� Exercise 4.16. Show that, for any matrix norm ‖•‖ induced by a vector norm,

ρ(A) 6 ‖A‖.

113

Chapter 4. Solution of linear systems of equation

� Exercise 4.17. Let ‖•‖ denote the Euclidean vector norm on Rn. We define in Appendix A
the induced matrix norm as

‖A‖ = sup
{
‖Ax‖ : ‖x‖ 6 1

}
.

Show from this definition that, if A is symmetric and positive definite, then

‖A‖ = ‖A‖∗ := sup
{
|xTAx| : ‖x‖ 6 1

}
.

Solution. By the Cauchy–Schwarz inequality and the definition of ‖A‖, it holds that

∀x ∈ Rn with ‖x‖ 6 1, |xT Ax| 6 ‖x‖‖Ax‖ 6 ‖x‖‖A‖‖x‖ 6 ‖A‖.

This shows that ‖A‖∗ 6 ‖A‖. Conversely, letting B denote a matrix square root of A (see
Exercise 4.8), we have

∀x ∈ Rn with ‖x‖ 6 1, ‖Ax‖ =
√
xT AT Ax =

√
(Bx)T BB(Bx) =

√
(Bx)T A(Bx)

= ‖Bx‖
√
yT Ay, y =

Bx
‖Bx‖ .

It holds that ‖Bx‖ =
√
xT Ax 6

√
‖A‖∗. In addition ‖y‖ = 1, so the expression inside the

square root is bounded from above by ‖A‖∗, which enables to conclude the proof. 4

� Exercise 4.18. Prove that, if the matrix A is strictly diagonally dominant (by rows or
columns), then the Gauss–Seidel method converges, i.e. ρ(M−1N) < 1. You can use the same
approach as in the proof of Proposition 4.11.

� Exercise 4.19. Let A ∈ Rn×n denote a symmetric positive definite matrix, and assume that
the vectors d1, . . . ,dn are pairwise A-orthogonal directions. Show that d1, . . . ,dn are linearly
independent.

� Exercise 4.20 (Steepest descent algorithm). Consider the linear system

Ax :=

(
3 1

1 3

)(
x1

x2

)
=

(
1

1

)
=: b. (4.41)

• Show that A is positive definite.

• Draw the contour lines of the function

f(x) =
1

2
xTAx− bTx.

• Plot the contour lines of f in Julia using the function contourf from the package Plots.

• Using Theorem 4.17, estimate the number K of iterations of the steepest descent algorithm
required in order to guarantee that EK 6 10−8, when starting from the vector x(0) = (2 3)T .

• Implement the steepest descent method for finding the solution to (4.41), and plot the
iterates as linked dots over the filled contour of f .

114

Chapter 4. Solution of linear systems of equation

• Plot the error Ek as a function of the iteration index, using a linear scale for the x axis
and a logarithmic scale for the y axis.

� Exercise 4.21. Compute the number of floating point operations required for performing
one iteration of the conjugate gradient method, assuming that the matrix A contains α � n

nonzero elements per row.

� Exercise 4.22 (Solving the Poisson equation over a rectangle). We consider in this exercise
Poisson’s equation in the domain Ω = (0, 2) × (0, 1), equipped with homogeneous Dirichlet
boundary conditions:

−4f(x, y) = b(x, y), x ∈ Ω,

f(x) = 0, x ∈ ∂Ω.

The right-hand side is
b(x, y) = sin(4πx) + sin(2πy).

A number of methods can be employed in order to discretize this partial differential equation.
After discretization, a finite-dimensional linear system of the form Ax = b is obtained. A
Julia function for calculating the matrix A and the vector b using the finite difference method
is given to you on the course website, as well as a function to plot the solution. The goal of
this exercise is to solve the linear system using the conjugate gradient method. Use the same
stopping criterion as in Exercise 4.25.

� Exercise 4.23. Show that if A ∈ Rn×n is nonsingular, then the solution to the equation
Ax = b belongs to the Krylov subspace

Kn(A, b) = Span
{
b,Ab,A2b, . . . ,An−1b

}
.

� Exercise 4.24. Write a function lu(A) for calculating the LU decomposition of a square
matrix A ∈ Rn×n, with L unit lower triangular and U upper triangular, not by Gaussian
elimination but by comparing the entries of the product LU with those of A. To this end, one
option is to compare the entries one by one in the order (1, 1), (1, 2), …, (1, n), (2, 1), (2, 2), …,
i.e. row by row starting from the top. For example,

• Comparing the entry (1, k) with k ∈ {1, . . . , n} gives

`11u1k = a1k.

Since `11 = 1 as L is unit lower triangular, this implies that u1k = a1k.

• Comparing the entry (2, 1) gives
`21u11 = a21

and so `21 = a21/u11.

• Comparing the entry (2, k) with k ∈ {2, . . . , n} gives

`21u1k + `22u2k = a2k.

115

Chapter 4. Solution of linear systems of equation

Given the previous items, the only unknown in this equation is u2k.

• Comparing the entry (3, 1) gives
`31u11 = a31,

and so `31 = a31/u11.

• Comparing the entry (3, 2) gives

`31u12 + `32u22 = a32,

Given the previous items, the only unknown in this equation is `32.

• Comparing the entry (3, k) with k ∈ {3, . . . , n} gives

`31u1k + `32u2k + `33u3k = a3k,

Given the previous items, the only unknown in this equation is u3k.

Notice that a pattern seems to be emerging: when going through the entries row by row starting
from the top left corner of the matrix, comparing the entry (i, j) provides an equation for `ij

if j < i, and an equation for uij if j > i. Do not use any external package for this exercise.
Extra credit: ... if your code is able to exploit the potential banded structure of the matrix
passed as argument for better efficiency. Specifically, your code will be tested with a matrix
created as follows

b, n = 5, 10000
A = [abs(i-j) <= b ? rand() : 0.0 for i in 1:n, j in 1:n]

� Exercise 4.25. Implement an iterative method based on a splitting for finding a solution to
the following linear system on Rn.

1

h2



2 −1
−1 2 −1

−1 2 −1
.

−1 2 −1
−1 2





x1

x2

x3
...

xn−1

xn


=



1

1

1
...
1

1


, h =

1

n+ 1
.

Plot the norm of the residual as a function of the iteration index. Use as stopping criterion the
condition

‖r(k)‖ 6 ε‖b‖, ε = 10−8.

As initial guess, use a vector of zeros. The code will be tested with n = 500. Do not use any
library (except for plotting), and do not use the backslash operator.

� Exercise 4.26. Find a formula for the optimal value of ω in the relaxation method given n,
for the linear system in Exercise 4.25. The proof of Proposition 4.15, as well as the for-
mula (4.24) for the eigenvalues of a tridiagonal matrix, are useful to this end.

116

Chapter 4. Solution of linear systems of equation

Solution. Corollary 4.13 and Proposition 4.14 imply that a sufficient and necessary condition
for convergence, when A is Hermitian and positive definite, is that ω ∈ (0, 2). Let Mω = 1

ωD+L
and Nω = 1−ω

ω D− U. A nonzero scalar λ ∈ C is an eigenvalue of M−1
ω Nω if and only if

det(M−1
ω Nω − λI) = 0 ⇔ det(M−1

ω)det(Nω − λMω) = 0 ⇔ det(λMω − Nω) = 0.

Substituting the expressions of Mω and Nω, we obtain that this condition can be equivalently
rewritten as

det
(
λL +

(
λ+ ω − 1

ω

)
D + U

)
= 0 ⇔ det

(√
λL +

(
λ+ ω − 1

ω

)
D +
√
λU
)

= 0

where we used (4.23) for the last equivalence. The equality of the determinants in these two
equations is valid for

√
λ denoting either of the two complex square roots of λ. This condition

is equivalent to

det
(

L +

(
λ+ ω − 1√

λω

)
D + U

)
= 0.

We recognize from the proof of Proposition 4.15 that this condition is equivalent to

λ+ ω − 1√
λω

∈ spectrum(M−1
J NJ).

In other words, for any (λ, µ) ∈ C2 such that

(λ+ ω − 1)2

λω2
= µ2, (4.42)

it holds that µ ∈ spectrum(M−1
J NJ) if and only if λ ∈ spectrum(M−1

ω Nω). By (4.24), the
eigenvalues of M−1

J NJ are real and given by

µj = cos
(

jπ

n+ 1

)
, 1 6 j 6 n. (4.43)

Rearranging (4.42), we find

λ2 + λ
(
2(ω − 1)− ω2µ2

)
+ (ω − 1)2 = 0.

For given ω ∈ (0, 2) and µ ∈ R, this is a quadratic equation for λ with solutions

λ± =

(
ω2µ2

2
+ 1− ω

)
± ωµ

√
ω2µ2

4
+ 1− ω,

Since the first bracket is positive when the argument of the square root is positive, it is clear
that

max
{
|λ−|, |λ+|

}
=

∣∣∣∣∣ω2µ2

2
+ 1− ω + ω|µ|

√
ω2µ2

4
+ 1− ω

∣∣∣∣∣ .
Combining this with (4.43), we deduce that the spectral radius of M−1

ω Nω is given by

ρ(M−1
ω Nω) = max

j∈{1,...,n}

∣∣∣∣∣∣ω
2µ2

j

2
+ 1− ω + ω|µj |

√
ω2µ2

j

4
+ 1− ω

∣∣∣∣∣∣ . (4.44)

We wish to minimize this expression over the interval ω ∈ (0, 2). While this can be achieved

117

Chapter 4. Solution of linear systems of equation

by algebraic manipulations, we content ourselves here with graphical exploration. Figure 4.3
depicts the amplitude of the modulus in (4.44) for different values of µ. It is apparent that, for
given ω, the modulus increases as µ increases, which suggests that

ρ(M−1
ω Nω) =

∣∣∣∣∣ω2µ2
∗

2
+ 1− ω + ω|µ∗|

√
ω2µ2

∗
4

+ 1− ω

∣∣∣∣∣ , µ∗ = ρ(M−1
J NJ). (4.45)

The figure also suggests that for a given value of µ, the modulus is minimized at the discontinuity
of the first derivative, which occurs when the argument of the square root is zero. We conclude
that the optimal ω satisfies

ω2
optµ

2
∗

4
+ 1− ωopt = 0 ===⇒

ω<2
ωopt = 2

1−
√

1− µ2
∗

µ2
∗

=
2

1 +
√
1− µ2

∗
=

2

1 + sin
(

π
n+1

) .
4

Figure 4.3: Modulus of |λ+| as a function of ω, for different eigenvalues of µ.

� Exercise 4.27 (Midterm 2022). Let A ∈ Rn×n be a symmetric positive definite matrix and
let b ∈ Rn. The steepest descent algorithm for solving Ax = b is given hereafter:

Pick ε > 0 and initial x
r ← Ax− b

while ‖r‖ > ε‖b‖ do
ω ← rTr/rTAr
x← x− ωr

r ← Ax− b

end while

• Why is this method called the steepest descent algorithm?

• How many floating point operations does an iteration of this algorithm require?

• Are the following statements true of false? (2 marks)

118

Chapter 4. Solution of linear systems of equation

1. There exists a unique solution x∗ to the linear system Ax = b.
2. The iterates converge to x∗ in at most n iterations.
3. We consider the following modification of the algorithm:

Pick ε > 0, ω > 0 and initial x
r ← Ax− b

while ‖r‖ > ε‖b‖ do
x← x− ωr

r ← Ax− b

end while

If ω is sufficiently small, then this algorithm converges.
4. Here we no longer assume that A is positive definite. Instead, we consider that

A =

(
−1 0

0 −2

)
.

In this case, the steepest descent algorithm is convergent for any initial x.

� Exercise 4.28 (Final exam Spring 2022). Assume that A ∈ Rn×n is a nonsingular matrix
and that b ∈ Rn. We wish to solve the linear system (4.1) using an iterative method where each
iteration is of the form

Mxk+1 = Nxk + b. (4.46)

Here A = M − N is a splitting of A such that M is nonsingular, and xk ∈ Rn denotes the k-th
iterate of the numerical scheme.

1. Let ek := xk − x∗, where x∗ is the exact solution to (4.1). Prove that

ek+1 = M−1Nek.

2. Let L = ‖M−1N‖∞. Prove that

∀k ∈ N, ‖ek‖∞ 6 Lk‖e0‖∞. (4.47)

3. Is the condition ‖M−1N‖∞ < 1 necessary for convergence when x0 6= x∗?

4. Assume that A is strictly row diagonally dominant, in the sense that

∀i ∈ {1, . . . , n}, |aii| >
n∑

j=1,j 6=i

|aij |.

Show that, in this case, the inequality ‖M−1N‖∞ < 1 holds for the Jacobi method, i.e.
when M contains just the diagonal of A. You may take for granted the following expression
for the ∞-norm of a matrix X ∈ Rn×n:

‖X‖∞ = max
16i6n

n∑
j=1

|xij |.

119

Chapter 4. Solution of linear systems of equation

5. Write down a few iterations of the Jacobi method when

A =

(
1 2

0 1

)
, b

(
1

1

)
, x0 =

(
0

0

)
.

Is the method convergent?

4.5 Discussion and bibliography

In this chapter, we presented direct methods and some of the standard iterative methods for
solving linear systems. We focused particularly on linear systems with a symmetric positive
definite matrix. Section 4.2 is based on [9, 16] and Section 4.3 roughly follows [14, Chapter 2].
The book [10] is a very detailed reference on iterative methods for solving sparse linear systems.
The reference [12] is an excellent introduction to the conjugate gradient method.

120

	Solution of linear systems of equation
	Conditioning
	Direct solution method
	Iterative methods for linear systems
	Exercises
	Discussion and bibliography

