
Chapter 1

Floating point arithmetic

Introduction

When we study numerical algorithms in the next chapters, we assume implicitly that the op-
erations involved are performed exactly. On a computer, however, only a subset of the real
numbers can be stored and, consequently, many arithmetic operations are performed only ap-
proximately. This is the source of the so-called round-off errors. The rest of this chapter is
organized as follows.

• In Section 1.1, we discuss the binary representation of real numbers.

• In Section 1.2, we describe the set of floating point numbers that can be represented in
the usual floating point formats;

• In Section 1.3 we explain how arithmetic operations between floating point numbers be-
have. We insist in particular on the fact that, in a calculation involving several successive
arithmetic operations, the result of each intermediate operation is stored as a floating
point number, with a possible error.

• In Section 1.4, we briefly present how floating point numbers are encoded according to
the IEEE 754 standard, widely accepted today. We discuss also the encoding of special
values such as Inf, -Inf and NaN.

• Finally, in Section 1.5, we present the standard integer formats and their encoding.

In order to completely describe floating-point arithmetic, one would in principle need to also
discuss the conversion mechanisms between different number formats, as well as a number of
edge cases. Needless to say, a comprehensive discussion of the subject is beyond the scope of
this course; our aim in this chapter is only to introduce the key concepts.
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Chapter 1. Floating point arithmetic

1.1 Binary representation of real numbers

Given any integer number β > 0, called the base, a real number x can always be expressed as
a finite or infinite series of the form

x = ±
∞∑

k=−n

akβ
−k, ak ∈ {0, . . . , β − 1}. (1.1)

The number x may then be denoted as ±(a−na−n+1 . . . a−1a0.a1a2 . . . )β, where the subscript β

indicates the base. This numeral system is called the positional notation and is universally used
today, both by humans (usually with β = 10) and machines (usually with β = 2). If the base β

is omitted, it is always assumed in this course that β = 10 unless otherwise specified – this is
the decimal representation. The digits a−n, a−n+1, . . . are also called bits if β = 2. In computer
science, several bases other than 10 are regularly employed, for example the following:

• Base 2 (binary) is the usual choice for storing numbers on a machine. The binary format
is convenient because the digits have only two possible values, 0 or 1, and so they can
be stored using simple electrical circuits with two states. We employ the binary notation
extensively in the rest of this chapter. Notice that, just like multiplying and dividing
by 10 is easy in base 10, multiplying and dividing by 2 is very simple in base 2: these
operations amount to shifting all the bits by one position to the left or right, respectively.

• Base 16 (hexadecimal) is sometimes convenient to represent numbers in a compact manner.
In order to represent the values 0-15 with a single digit, 16 different symbols are required,
which are conventionally denoted by {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A,B,C,D,E, F}. With this
notation, we have (FF )16 = (255)10, for example.

The hexadecimal notation is often used in programming languages for describing colors
specified by a triplet (r, g, b) of values between 0 and 255, corresponding to the primary
colors red, blue and green. The number of possible values for each component is 256 =

162, and so only 2 digits are required to represent these in the hexadecimal notation.
Hexadecimal numbers are also employed in IPv6 addresses, which are used to identify
computers connected to a network.

1.1.1 Conversion between binary and decimal formats

Obtaining the decimal representation of a binary number can be achieved from (1.1), using the
decimal representations of the powers of 2. Since all the positive and negative powers of 2 have
a finite decimal representation, any real number with a finite representation in base 2 has a
finite representation also in base 10. For example, (0.01)2 = (0.25)10 and (0.111)2 = (0.875)10.

Example 1.1 (Converting a binary number to decimal notation). Let us calculate the decimal
representation of x = (0.10)2, where the horizontal line indicates repetition: x = (0.101010 . . . )2.
By definition, it holds that

x =

∞∑
k=0

ak2
−k,
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Chapter 1. Floating point arithmetic

where ak = 0 if k is even and 1 otherwise. Thus, the series may be rewritten as

x =
∞∑
k=0

2−(2k+1) =
1

2

∞∑
k=0

(2−2)k.

We recognize on the right-hand side a geometric series with common ratio r = 2−2 = 1
4 , and so

we obtain
x =

1

2

(
1

1− r

)
=

2

3
= (0.6)10.

Obtaining the binary representation of a decimal number is more difficult, because negative
powers of 10 have infinite binary representations, as Exercise 1.4 demonstrates. There is,
however, a simple procedure to perform the conversion, which we present for the specific case of
a real number x with decimal representation of the form x = (0.a1 . . . an)10. In this setting, the
bits (b1, b2, . . . ) in the binary representation of x = (0.b1b2b2 . . . )2 may be obtained as follows:

Algorithm 1 Conversion of a number to binary format
1: i← 1
2: while x 6= 0 do
3: x← 2x
4: if x > 1 then
5: bi ← 1
6: else
7: bi ← 0
8: end if
9: x← x− bi

10: i← i+ 1
11: end while

Example 1.2 (Converting a decimal number to binary notation). Let us calculate the binary
representation of x = 1

3 = (0.3)10. We apply Algorithm 1 and collate the values of i and x

obtained at the beginning of each iteration, i.e. just before Line 3, in the table below.

i x Result
1 1

3 0.0000…
2 2

3 0.0100…
3 1

3 0.0000…

Since x in the last row is again 1
3 , successive bits alternate between 0 and 1, and the binary

representation of x is given by (0.01)2. This is not surprising since 2x = (0.66)10 = (0.10)2, as
we saw in Example 1.1.
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Chapter 1. Floating point arithmetic

1.2 Set of values representable in floating point formats

We mentioned in the introduction that, because of memory limitations, only a subset of the real
numbers can be stored exactly in a computer. Nowadays, the vast majority of programming
languages and software comply with the IEEE 754 standard, which requires that the set of
representable numbers be of the form

F(p,Emin, Emax) =
{
(−1)s2E(b0.b1b2 . . . bp−1)2 :

s ∈ {0, 1}, bi ∈ {0, 1} andEmin 6 E 6 Emax

}
. (1.2)

In addition to these, floating number formats provide the special entities Inf, -Inf and NaN,
the latter being an abbreviation for Not a Number. Three parameters appear in the set defini-
tion (1.2). The parameter p ∈ N>0 is the number of significant bits (also called the precision),
and (Emin, Emax) ∈ Z2 are respectively the minimum and maximum exponents. From the preci-
sion, the machine epsilon is defined as εM = 2−(p−1); its significance is discussed in Section 1.2.2.

For a number x ∈ F(p,Emin, Emax), s is called the sign, E is the exponent and b0.b1b2 . . . bp−1

is the significand. The latter can be divided into a leading bit b0 and the fraction b1b2 . . . bp−1,
to the right of the binary point. The most widely used floating point formats are the sin-
gle and double precision formats, which are called respectively Float32 and Float64 in Julia.
Their parameters, together with those of the lesser-known half-precision format, are summa-
rized in Table 1.1. In the rest of this section we use the shorthand notation F16, F32 and F64.
Note that F16 ⊂ F32 ⊂ F64.

Half precision Single precision Double precision
p 11 24 53

Emin -14 -126 -1022
Emax 15 127 1023

Table 1.1: Floating point formats. The first column corresponds to the half-precision format.
This format, which is available through the Float16 type in Julia, is more recent than the single
and double precision formats. It was introduced in the 2008 revision to the IEEE 754 standard
of 1985, a revision known as IEEE 754-2008.

Remark 1.1. Some definitions, notably that in [9, Section 2.5.2], include a general base β

instead of the base 2 as an additional parameter in the definition of the number format (1.2).
Since the binary format (β = 2) is always employed in practice, we focus on this case for
simplicity in most of this chapter.

Remark 1.2. Given a real number x ∈ F(p,Emin, Emax), the exponent E and significand are
generally not uniquely defined. For example, the number 2.0 ∈ F64 may be expressed as
(−1)021(1.00 . . . 00)2 or, equivalently, as (−1)022(0.100 . . . 00)2.

In Julia, non-integer number literals are interpreted as Float64 by default, which can be
verified by using the typeof function. For example, the instruction “a = 0.1” is equivalent
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Chapter 1. Floating point arithmetic

to “a = Float64(0.1)”. In order to define a number of type Float32, the suffix f0 must be
appended to the decimal expansion. For instance, the instruction “a = 4.0f0” defines a floating
point number a of type Float32; it is equivalent to writing “a = Float32(4.0)”.

1.2.1 Denormalized floating point numbers

We can decompose the set F(p,Emin, Emax) in two disjoint parts:

F(p,Emin, Emax) =
{
(−1)s2E(1.b1b2 . . . bp−1)2 :

s ∈ {0, 1}, bi ∈ {0, 1} andEmin 6 E 6 Emax

}
∪
{
(−1)s2Emin(0.b1b2 . . . bp−1)2 : s ∈ {0, 1}, bi ∈ {0, 1}

}
.

The numbers in the second set are called subnormal or denormalized.

1.2.2 Relative error and machine epsilon

Let x be a nonzero real number and x̂ be an approximation. We define the absolute and relative
errors of the approximation as follows.

Definition 1.1 (Absolute and relative error). The absolute error is given by |x− x̂|, whereas
the relative error is

|x− x̂|
|x|

The following result establishes a link between the machine εM and the relative error between
a real number and the closest member of a floating point format.

Proposition 1.1. Let xmin and xmax denote the smallest and largest non-denormalized pos-
itive numbers in a format F = F(p,Emin, Emax). If x ∈ [−xmax,−xmin] ∪ [xmin, xmax], then

min
x̂∈F

|x− x̂|
|x|

6
1

2
2−(p−1) =

1

2
εM . (1.3)

Proof. For simplicity, we assume that x > 0. Let n = blog2(x)c and y := 2−nx. Since y ∈ [1, 2),
it admits a binary representation of the form (1.b1b2 . . . )2 6= (1.1)2 Thus x = 2n(1.b1b2 . . . )2,

and from the assumption that xmin 6 x 6 xmax we deduce that Emin 6 n 6 Emax. We now
define the number x− ∈ F by truncating the binary expansion of x as follows:

x− = 2n(1.b1 . . . bp−1)2.

The distance between x− and its successor in F , which we denote by x+, is given by 2n−p+1.
Consequently, it holds that

(x+ − x) + (x− x−) = x+ − x− = 2n−p+1.
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Chapter 1. Floating point arithmetic

Figure 1.1: Density of the double-precision floating point numbers, measured here as 1/∆(x)
where, for x ∈ F64, ∆(x) denotes the distance between x and its successor in F64.

Since both summands on the left-hand side are positive, this implies that either x+−x or x−x−
is bounded from above by 1

22
n−p+1 6 1

22
−p+1x, which concludes the proof.

The machine epsilon, which was defined as εM = 2−(p−1), coincides with the maximum
relative spacing between a non-denormalized floating point number x and its successor in the
floating point format, defined as the smallest number in the format that is strictly larger than x.

Figure 1.1 depicts the density of double-precision floating point numbers, i.e. the number
of F64 members per unit on the real line. The figure shows that the density decreases as
the absolute value of x increases. We also notice that the density is piecewise constant with
discontinuities at powers of 2. Figure 1.2 illustrates the relative spacing between successive
floating point numbers. Although the absolute spacing increases with the absolute value of x,
the relative spacing oscillates between 1

2εM and εM .

Figure 1.2: Relative spacing between successive double-precision floating point numbers in the
“normal range”. The relative spacing oscillates between 1

2εM and εM .

The picture of the relative spacing between successive floating point numbers looks quite
different for denormalized numbers. This is illustrated in Figure 1.3, which shows that the
relative spacing increases beyond the machine epsilon in the denormalized range. Fortunately,
in the usual F32 and F64 formats, the transition between denormalized and non-denormalized
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numbers occurs at such a small value that it rarely needs worrying about.

Figure 1.3: Relative spacing between successive double-precision floating point numbers, over a
range which includes denormalized number. The vertical red line indicates the transition from
denormalized to non-denormalized numbers.

Example 1.3. In Julia, the machine epsilon can be obtained using the eps function. For example,
the instruction eps(Float16) returns εM for the half-precision format.

1.3 Arithmetic operations between floating point formats

Now that we have presented the set of values representable on a computer, we attempt in
this section to understand precisely how arithmetic operations between floating point formats
are performed. The key mechanism governing arithmetic operations on a computer is that of
rounding, the action of approximating a real number regarded as infinitely precise by a number
in a floating point format F(p,Emin, Emax). The IEEE 754 standard stipulates that the default
mechanism for rounding a real number x, called round to nearest, should behave as follows:

• Standard case: The number x is rounded to the nearest representable number, if this
number is unique.

• Edge case: When there are two equally near representable numbers in the floating point
format, the one with the least significant bit equal to zero is delivered.

• Infinities: If the real number x is larger than the largest representable number in the
format, that is larger than or equal to xmax = 2Emax(2− 2−p−1), then there are two cases,

– If x < 2Emax(2− 2−p), then xmax is delivered;

– Otherwise, the special value Inf is delivered.

In other words, xmax is delivered if it would be delivered by following the rules of the first
two bullet points in a different floating point format with the same precision but a larger
exponent Emax. A similar rule applies for large negative numbers.
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Chapter 1. Floating point arithmetic

When a binary arithmetic operation (+, −, ×, /) is performed on floating point numbers
in format F, the result delivered by the computer is obtained by rounding the exact result of
the operation according to the rules given above. In other words, the arithmetic operation is
performed as if the computer first calculated an intermediate exact result, and then rounded
this intermediate result in order to provide a final result in F.

Mathematically, arithmetic operations between floating point numbers in a given format F
may be formalized by introducing the rounding operator fl : R → F and by defining, for any
binary operation ◦ ∈ {+,−,×, /}, the corresponding machine operation

◦̂ : F× F→ F; (x, y) 7→ fl(x ◦ y).

We defined this operator for arguments in the same floating point format F. If the arguments
of a binary arithmetic operation are of different types, the format of the end result, known as
the destination format, depends on that of the arguments: as a rule of thumb, it is given by
the most precise among the formats of the arguments. In addition, recall that a floating point
literal whose format is not explicitly specified is rounded to double-precision format and so, for
example, the addition 0.1 + 0.1 produces the result fl64

(
fl64(0.1)+ fl64(0.1)

)
, where fl64 is the

rounding operator to the double-precision format.

Example 1.4. Using the typeof function, we check that the floating point literal 1.0 is indeed
interpreted as a double-precision number:

julia> a = 1.0; typeof(a)
Float64

When two numbers in different floating point formats are passed to a binary operation, the
result is in the more precise format.

julia> typeof(Float16(1) + Float32(1))
Float32

julia> typeof(Float32(1) + Float64(1))
Float64

If a mathematical expression contains several binary arithmetic operations to be performed
in succession, the result of each intermediate calculation is stored in a floating point format
dictated by the formats of its argument, and this floating point number is employed in the next
binary operation. A consequence of this mechanism is that the machine operands +̂ and ∗̂ are
generally not associative. For example, in general

(x +̂ y) +̂ z 6= x +̂ (y +̂ z)
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Example 1.5. Let x = 1 and y = 3× 2−13. Both of these numbers belong to F16 and, denoting
by +̂ machine addition in F16, we have

(x +̂ y) +̂ y = 1 (1.4)

but
x +̂ (y +̂ y) = 1 + 2−10. (1.5)

To explain this somewhat surprising result, we begin by writing the normalized representations
of x and y in the F16 format:

x = (−1)0 × 20 × (1.0000000000)2

y = (−1)0 × 2−12 × (1.1000000000)2.

The exact result of the addition x+ y is given by r = 1+ 3× 2−13, which in binary notation is

r = (1. 00000000000︸ ︷︷ ︸
11 zeros

11)2.

Since the length of the significand in the half-precision (F16) format is only p = 11, this number
is not part of F16. The result of the machine addition +̂ is therefore obtained by rounding r to
the nearest member of F16, which is 1. This reasoning can then be repeated in order to conclude
that, indeed,

(x +̂ y) +̂ y = x +̂ y = 1.

In order to explain the result of (1.5), note that the exact result of the addition y + y is
r = 3× 2−12, which belongs to the floating point format, so it also holds that y +̂ y = 3× 2−12.
Therefore,

x +̂ (y +̂ y) = 1 +̂ 3× 2−12 = fl16(1 + 3× 2−12).

The argument of the F16 rounding operator does not belong to F16, since its binary representa-
tion is given by

(1. 0000000000︸ ︷︷ ︸
10 zeros

11)2.

This time the nearest member of F16 is given by 1 + 2−10.

When a numerical computation unexpectedly returns Inf or Inf, we say that an over-
flow error occurred. Similarly, underflow occurs when a number is smaller than the smallest
representable number in a floating point format.

1.4 Encoding of floating point numbers �

Once a number format is specified through parameters (p,Emin, Emax), the choice of encoding,
i.e. the machine representation of numbers in this format, has no bearing on the magnitude and
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propagation of round-off errors. Studying encoding is, therefore, not essential for our purposes
in this course, but we opted to cover the topic anyway in the hope that it will help the students
build intuition on floating point numbers. We focus mainly on the single precision format, but
the following discussion applies mutatis mutandis to the double and half-precision formats. The
material in this section is for information purposes only.

We already mentioned in Remark 1.2 that a number in a floating point format may have
several representations. On a computer, however, a floating point number is always stored in
the same manner (except for the number 0, see Remark 1.4). The values of the exponent and
significand which are selected by the computer, in the case where there are several possible
choices, are determined from the following rules:

• Either E > Emin and b0 = 1;

• Or E = Emin, in which case the leading bit may be 0.

The following result proves that these rules define the exponent and significand uniquely.

Proposition 1.2. Assume that

(−1)s(2Eb0.b1 . . . bp−1)2 = (−1)s̃(2Ẽ b̃0 .̃b1 . . . b̃p−1)2, (1.6)

where the parameter sets (s,E, b0, . . . bp−1) and (s̃, Ẽ, b̃0, . . . , b̃p−1) both satisfy the above rule.
Then E = Ẽ and bi = b̃i for i ∈ {0, . . . , p− 1}.

Proof. We show that E = Ẽ, after which the equality of significands follows trivially. Let us
assume for contradiction that E > Ẽ and denote the left and right-hand sides of (1.6) by x

and x̃, respectively. Then E > Emin, implying that b0 = 1 and so 2E 6 |x| < 2E+1. On the
other hand, it holds that |x̃| < 2Ẽ+1 regardless of whether Ẽ = Emin or not. Since E > Ẽ + 1

by assumption, we deduce that |x̃| < 2E 6 |x|, which contradicts the equality x = x̃.

Now that we have explained how a unique set of parameters (sign, exponent, significand)
can be assigned to any floating point number, we describe how these parameters are stored on
the computer in practice. As their names suggest, the Float16, Float32 and Float64 formats
use 16, 32 and 64 bits of memory, respectively. A naive approach for encoding these number
formats would be to store the full binary representations of the sign, exponent and significand.

For the Float32 format, this approach would requires 1 bit for the sign, 8 bits to cover the
254 possible values of the exponent, and 24 bits for the significand, i.e. for storing b0, . . . , bp−1.
This leads to a total number of 33 bits, which is one more than is available, and this is without
the special values NaN, Inf and -Inf. So how are numbers in the F32 format actually stored?
To answer this question, we begin with two observations:

• If E > Emin, then necessarily b0 = 1 in the unique representation of the significand.
Consequently, the leading bit need not be explicitly specified in the case; it is said to be
implicit. We will see, as a consequence, that p − 1 instead of p bits are in fact sufficient
for the significand.
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• In the F32 format, 8 bits at minimum need to be reserved for the exponent, which enables
the representation of 28 = 256 different values, but there are only 254 possible values for
the exponent. This suggests that 256−254 = 2 combinations of the 8 bits can be exploited
in order to represent the special values Inf, -Inf and NaN.

Simplifying a little bit, we may view single precision floating point number as an array of
32 bits as illustrated below:

Sign Encoded exponent Encoded significand
1 bit 8 bits 23 bits

According to the IEEE 754 standard, the first bit is the sign s, the next 8 bits e0e1 . . . e6e7 encode
the exponent, and the last 23 bits b1b2 . . . bp−2bp−1 encode the significand. Let us emphasize
that when we say “encode the exponent” here, we just mean that the bits contain information
from which the exponent can be uniquely determined, but we have not yet described how this is
achieved. Let us introduce the integer number e = (e0e1 . . . e6e7)2; that is to say, 0 6 e 6 28−1

is the integer number whose binary representation is given by e0e1 . . . e6e7. One may determine
the exponent and significand of a floating point number from the following rules.

• Denormalized numbers: If e = 0, then the implicit leading bit b0 is zero, the frac-
tion is b1b2 . . . bp−2bp−1, and the exponent is E = Emin. In other words, using the
notation of Section 1.2, we have x = (−1)s2Emin(0.b1b2 . . . bp−2bp−1)2. In particular, if
b1b2 . . . bp−2bp−1 = 00 . . . 00, then it holds that x = 0.

• Non-denormalized numbers: If 0 < e < 255, then the implicit leading bit b0 of the
significand is 1 and the fraction is given by b1b2 . . . bp−2bp−1. The exponent is given by

E = e− bias = Emin + e− 1.

where the exponent bias for the single and double precision formats are given in Table 1.2.
In this case x = (−1)s2e−bias1.b1b2 . . . bp−2bp−1. Notice that E = Emin if e = 1, as in the
case of denormalized numbers.

• Infinities: If e = 255 and b1b2 . . . bp−2bp−1 = 00 . . . 00, then x = Inf if s = 0 and -Inf
otherwise.

• Not a Number: If e = 255 and b1b2 . . . bp−2bp−1 6= 00 . . . 00, then x = NaN. Notice that
the special value NaN can be encoded in many different manners. These extra degrees of
freedom were reserved for passing information on the reason for the occurrence of NaN,
which is usually an indication that something has gone wrong in the calculation.

Remark 1.3 (Encoding efficiency). With 32 bits, at most 232 different numbers could in
principle be represented. In practice, as we saw in Exercise 1.10, the Float32 format enables
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Half precision Single precision Double precision
Exponent bias (−Emin + 1) 15 127 1023

Exponent encoding (bits) 5 8 11
Significand encoding (bits) 10 23 52

Table 1.2: Encoding parameters for floating point formats

to represent

(Emax − Emin)2
p + 2p+1 − 1 = 253× 223 + 225 − 1 = 232 − 224 − 1 ≈ 99.6%× 232,

different real numbers, indicating a very good encoding efficiency.

Remark 1.4 (Nonuniqueness of the floating point represention of 0.0). The sign s is clearly
unique for any number in a floating point format, except for 0.0, which could in principle be
represented as

(−1)02Emin(0.00 . . . 00)2 or (−1)12Emin(0.00 . . . 00)2.

In practice, both representations of 0.0 are available on most machines, and these behave
slightly differently. For example 1/(0.0) = Inf but 1/(-0.0) = -Inf.

1.5 Integer formats �

The machine representation of integer formats is much simpler than that of floating point
numbers. In this short section, we give a few orders of magnitude for common integer formats
and briefly discuss overflow issues. Programming languages typically provide integer formats
based on 16, 32 and 64 bits. In Julia, these correspond to the types Int16, Int32 and Int64, the
latter being the default for integer literals.

The most common encoding for integer numbers, which is used in Julia, is known as two’s
complement: a number encoded with p bits given by bp−1bp−2 . . . b0 corresponds to

x = −bp−12
p−1 +

p−2∑
i=0

bi2
i.

This encoding enables to represent uniquely all the integers from Nmin = −2p−1 to Nmax =

2p−1 − 1. In contrast with floating point formats, integer formats do not provide special values
like Inf and NaN. The number delivered by the machine when a calculation exceeds the maxi-
mum representable value in the format, called the overflow behavior, generally depends on the
programming language.

Since overflow behavior of integer numbers is not universal across programming languages, a
detailed discussion is of little interest. We only mention that Julia uses a wraparound behavior,
where Nmax + 1 silently returns Nmin and, similarly, −Nmin − 1 gives Nmax; the numbers loop
back. This can lead to unexpected results, such as 2^64 evaluating to 0.
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1.6 Exercises

� Exercise 1.1. Show that if a number x ∈ R admits a finite representation (1.1) in base β,
then it also admits an infinite representation in the same base. Hint: You may have learned
before that (0.9)10 = 1.

� Exercise 1.2. How many digits does it take to represent all the integers from 0 to 1010 − 1

in decimal and binary format? What about the hexadecimal format?

� Exercise 1.3. Find the decimal representation of (0.0001100)2.

� Exercise 1.4. Find the binary representation of (0.1)10.

� Exercise 1.5. Implement Algorithm 1 on a computer and verify that it works. Your function
should take two arguments: an array of integers [a_1, ..., a_n] containing the digits after
the decimal point and the m number of bits to return. The bits should be returned as an
array [b_1, ..., b_m]

� Exercise 1.6. As mentioned above, Algorithm 1 works only for decimal numbers of the
specific form x = (0.a1 . . . an)10. Find and implement a similar algorithm for integer numbers.
More precisely, write a function that takes an integer n as argument and returns an array
containing the bits of the binary expansion (bm . . . b0)2 of n, from the least significant b0 to the
most significant bm. That is to say, your code should return [b_0, b_1, ...].

function to_binary(n)
# Your code comes here

end

# Check that it works
number = 123456789
bits = to_binary(number)
pows2 = 2 .^ range(0, length(bits) - 1)
@assert sum(bits'pows2) == number

� Exercise 1.7. Show that the successor of 1 in F64 is 1 + εM , where εM is the machine
epsilon for the double-precision format.

� Exercise 1.8. Write down the values of the smallest and largest, in absolute value, positive
real numbers representable in the F32 and F64 formats.

� Exercise 1.9 (Relative error and machine epsilon). Prove that the inequality (1.3) is sharp.
To this end, find x ∈ R such that the inequality is an equality.

� Exercise 1.10 (Cardinality of the set of floating point numbers). Show that, if Emax > Emin,
then F(p,Emin, Emax) contains exactly

(Emax − Emin)2
p + 2p+1 − 1

distinct real numbers. (In particular, the special values Inf, -Inf and NaN are not counted.)
Hint: Count first the numbers with E > Emin and then those with E = Emin.
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� Exercise 1.11. Calculate the machine epsilon ε16 for the F16 format. Write the results of
the arithmetic operations 1 +̂ ε16 and 1 −̂ ε16 in the form

2E(1.b1 . . . bp−1)2.

� Exercise 1.12. Let ε16 be the machine epsilon for the F16 format, and define y = 4
3ε16. What

is the relative error between ∆ = (1 + y)− 1, and the machine approximation ∆̂ = (1 +̂ y) −̂ 1?

� Exercise 1.13 (Numerical differentiation). Let f(x) = exp(x). By definition, the derivative
of f at 0 is

f ′(0) = lim
δ→0

(
f(δ)− f(0)

δ

)
.

The expression within brackets on the right-hand side may be used with a small but nonzero δ

as an approximation for f ′(0). Implement this approach using double-precision numbers and
the same values for δ as in the table below. Explain the results you obtain.

δ ε64
4

ε64
2 ε64

Approximation of f ′(0) 0 2 1

� Exercise 1.14 (Avoiding overflow). Write a code to calculate the weighted average

S :=

∑J
j=0wjj∑J
j=0wj

, wj = exp(j), J = 1000.

You may need to first rewrite S differently.

� Exercise 1.15. Plot the function x 7→ log
(
eex − 1

)
over the interval [0, 10].

� Exercise 1.16 (Calculating the sample variance). Assume that (xn)16n6N , with N = 106,
are independent random variables distributed according to the uniform distribution U(L,L+1).
That is, each xn takes a random value uniformly distributed between L and L+1 where L = 109.
In Julia, these samples can be generated with the following lines of code:

N, L = 10^6, 10^9
x = L .+ rand(N)

It is well know that the variance of xn ∈ U(L,L + 1) is given by σ2 = 1
12 . Numerically, the

variance can be estimated from the sample variance:

s2 =
1

N − 1

((
N∑

n=1

x2n

)
−Nx̄2

)
, x̄ =

1

N

N∑
n=1

xn. (1.7)

Write a computer code to calculate s2 with the best possible accuracy. Can you find a formula
that enables better accuracy than (1.7)?
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Remark 1.5. In order to estimate the true value of s2 for your samples, you can use the
BigFloat format, to which the array x can be converted by using the instruction

x = BigFloat.(x)

� Exercise 1.17. Euler proved that

π2

6
= lim

N→∞

N∑
n=1

1

n2
.

Using the default Float64 format, estimate the error obtained when the series on the right-hand
side is truncated after 1010 terms. Can you rearrange the sum for best accuracy?

� Exercise 1.18. Let x and y be positive real numbers in the interval [2−10, 210] (so that we
do not need to worry about denormalized numbers, assuming we are working in single or double
precision), and let us define the machine addition operator +̂ for arguments in real numbers as

+̂ : R×R→ R; (x, y) 7→ fl
(
fl(x) + fl(y)

)
.

Prove the following bound on the relative error between the sum x+ y and its machine approx-
imation x +̂ y: ∣∣(x+ y)− (x +̂ y)

∣∣
|x+ y|

6
εM
2

(
2 +

εM
2

)
.

Hint: decompose the numerator as

(x+ y)− (x +̂ y) =
(
x− fl(x)

)
+
(
y − fl(y)

)
+
(
fl(x) + fl(y)− (x+̂y)

)
,

and then use Proposition 1.1.

� Exercise 1.19. Is Float32(0.1) * Float32(10) == 1 equal to true or false given the
default rounding rule defined by the IEEE standard? Explain.

Solution. By default, real numbers are rounded to the nearest floating point number. This can
be checked in Julia with the command rounding(Float32), which prints the default rounding
mode. The exact binary representation of the real number x = 0.1 is

x = (0.0001100)2

= 2−4 × (1.10011001100110011001100︸ ︷︷ ︸
24 bits

1100)2

The first task is to determine the member of F32 that is nearest x. We have

x− = max
{
y : y ∈ F32 and y 6 x

}
= 2−4 × (1.10011001100110011001100)2

x+ = min
{
y : y ∈ F32 and y > x

}
= 2−4 × (1.10011001100110011001101)2.

Since the number (0.1100)2 is closer to 1 than to 0, the number x is closer to x+ than to x−.
Therefore, the number obtained when writing Float32(0.1) is x+. To conclude the exercise,
we need to calculate fl

(
10× x+

)
, and to this end we first write the exact binary representation
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of the real number 10× x+ = (1010)2 × x+. We have

(1010)2 × x+ = (1000)2 × x+ + (10)2 × x+ = 2−4 × (1100.11001100110011001101)2

+ 2−4 × (11.0011001100110011001101)2

= 2−4 × (10000.0000000000000000000︸ ︷︷ ︸
24 bits

001)2.

This can be checked in Julia by writing bitstring(Float32(0.1) * Float64(10.0)). Clearly,
when rounding to the nearest F32 number, the number 2−4(10000)2 = 1 is obtained. 4

Remark 1.6. It should not be inferred from Exercise 1.19 that Float32(1/i) * i is always
exact in floating point arithmetic. For example Float32(1/41) * 41 does not evaluate to 1,
and neither do Float16(1/11) * 11 and Float64(1/49) * 49.

� Exercise 1.20. Given that the default rounding rule specified by the IEEE 754 standard is
“round to nearest, tie to even”, does Float16(0.1) + Float16(0.2) == Float16(0.3) evaluate
to true or false. Explain.

� Exercise 1.21. Explain why Float32(sqrt(2))^2 - 2 is not zero in Julia.

Solution. The exact binary representation of x :=
√
2 is

x = (1.01101010000010011110011︸ ︷︷ ︸
24 bits

001100 . . . )2.

The first task is to determine the member of F32 that is nearest x. We have

x− = max
{
x : x ∈ F32 and x 6

√
2
}
= (1.01101010000010011110011︸ ︷︷ ︸

24 bits

)2

x+ = min
{
x : x ∈ F32 and x >

√
2
}
= (1.01101010000010011110100︸ ︷︷ ︸

24 bits

)2,

and we calculate

x− x− = 2−24(0.01100 . . . )2,

x+ − x = 2−21
(
1− (0.11001100 . . . )2

)
> 2−21

(
1− (0.11001101)2

)
= 2−21 (0.00110011)2 .

We deduce that x−x− < x+−x, and so fl(x) = x−. To conclude the exercise, we need to show
that fl

(
(x−)2

)
is not equal to 2. The exact binary expansion of (x−)2 is

(x−)2 = (1.11111111111111111111111︸ ︷︷ ︸
24 bits

01101100111111010101001)2.

The member of F32 nearest this number is

(1.11111111111111111111111)2 = 2− 2−23,

which is precisely the result returned by Julia. 4

� Exercise 1.22 (Numerical differentiation). Let f(x) = exp(x) and let d(δ) be the approxi-
mation of f ′(x) obtained from the following piece of code:
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f, x = exp, 1
d(δ) = (f(x+δ) - f(x))/δ

Plot for fixed x = 1 the error abs(d(δ) - exp(x)) as a function of δ in logarithmic scale, and
explain the result.

Solution. We assume that δ ∈ F64 for simplicity This is not a restrictive assumption as δ can
only take floating point values in computer code. The proof is rather technical, and so it is
given for information purposes only. We rewrite d(δ) mathematically as

d(δ) =
(
f̂(x +̂ δ) −̂ f̂(x)

)
/̂ δ,

where f̂(x) = fl
(
f(x)

)
. We wish to bound |d(δ)− f ′(x)|. By the triangle inequality,

|f ′(x)− d(δ)| 6
∣∣∣∣f ′(x)− f(x+ δ)− f(x)

δ

∣∣∣∣+ ∣∣∣∣f(x+ δ)− f(x)

δ
−
(
f̂(x +̂ δ) −̂ f̂(x)

)
/̂ δ

∣∣∣∣ . (1.8)

Bounding the first term in (1.8). By Taylor’s theorem, there exists ξ ∈ [x, x+ δ] such that

f(x+ δ) = f(x) + δf ′(x) +
δ2

2
f ′′(ξ).

Therefore, the first term in (1.8) satisfies∣∣∣∣f ′(x)− f(x+ δ)− f(x)

δ

∣∣∣∣ = δ

2
|f ′′(ξ)| = δ

2
|f ′′(x)|+O(δ2).

Bounding the second term in (1.8) – the roundoff error. This is more tedious but not
difficult; the main ingredient is the triangle inequality. Specifically, we will use the bound∣∣∣∣f(x+ δ)− f(x)

δ
−
(
f̂(x +̂ δ) −̂ f̂(x)

)
/̂ δ

∣∣∣∣
6 δ−1

∣∣f(x+ δ)− f(x +̂ δ)
∣∣+ δ−1

∣∣∣f(x +̂ δ)− f̂(x +̂ δ)
∣∣∣+ δ−1

∣∣∣f̂(x)− f(x)
∣∣∣

+ δ−1
∣∣∣(f̂(x +̂ δ)− f̂(x)

)
−
(
f̂(x +̂ δ) −̂ f̂(x)

)∣∣∣
+
∣∣∣(f̂(x +̂ δ) −̂ f̂(x)

)
/δ −

(
f̂(x +̂ δ) −̂ f̂(x)

)
/̂ δ
∣∣∣ . (1.9)

Note that without absolute values, both sides are indeed equal. The first three terms on the
right-hand side are together a bound from above for∣∣∣∣∣f(x+ δ)− f(x)

δ
− f̂(x +̂ δ)− f̂(x)

δ

∣∣∣∣∣ , (1.10)

while the two other terms account for the roundoff errors associated to the machine subtraction
and division operators, respectively. We will show that the dominant contributions in (1.9) are
the first three terms; the latter two are negligible in comparison. Employing Proposition 1.1
with x = f(a), x = a± b and x = a/b, we deduce that the following inequalities:∣∣∣f̂(a)− f(a)

∣∣∣ 6 ε|f(a)|, |(a± b)− (a ±̂ b)| 6 ε|a− b|, |a/b− a /̂ b| 6 ε|a/b|. (1.11)
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The first two inequalities are valid for all (a, b) ∈ F64 × F64, while the third one is valid for
all (a, b) ∈ F64 × F64\{0}. The first inequality in (1.11) can be employed in order to bound the
second and third term on the right-hand side of (1.9):

δ−1
∣∣∣f(x +̂ δ)− f̂(x +̂ δ)

∣∣∣+ δ−1
∣∣∣f̂(x)− f(x)

∣∣∣ 6 δ−1ε
(∣∣f(x+ δ)

∣∣+ ∣∣f(x)∣∣)
= 2δ−1ε|f(x)|+O(ε). (1.12)

Using Taylor’s theorem and then the second inequality in (1.11) (with +), we then bound the
first term on right-hand side of (1.9) as

δ−1
∣∣f(x+ δ)− f(x +̂ δ)

∣∣ = δ−1
∣∣f ′(ξ)

(
(x+ δ)− (x +̂ δ)

)∣∣
6 δ−1ε|f ′(ξ)||x+ δ| = δ−1ε|f ′(x)x|+O(ε). (1.13)

Combining (1.12) and (1.13), we have that

δ−1
∣∣∣(f(x+ δ)− f(x)

)
−
(
f̂(x +̂ δ)− f̂(x)

)∣∣∣ = O(δ−1ε). (1.14)

Next, using the second inequality in (1.11) (with −) and then (1.14), we bound the fourth term
in (1.9) as follows:

δ−1
∣∣∣(f̂(x +̂ δ)− f̂(x)

)
−
(
f̂(x +̂ δ) −̂ f̂(x)

)∣∣∣
6 δ−1ε|f̂(x +̂ δ)− f̂(x)| = δ−1ε |f(x+ δ)− f(x)|︸ ︷︷ ︸

=O(δ)

+O(δ−1ε2) = O
(
ε+ δ−1ε2

)
. (1.15)

Notice that this term is smaller than the first three in (1.9) when δ � 1. We deduce by a
triangle inequality from (1.14) and (1.15) that

δ−1
∣∣∣(f(x+ δ)− f(x)

)
−
(
f̂(x +̂ δ) −̂ f̂(x)

)∣∣∣ = O(δ−1ε).

Finally, using the third inequality in (1.11) together with this equation, we bound the fifth term
on the right-hand side of (1.9):∣∣∣(f̂(x +̂ δ) −̂ f̂(x)

)
/δ −

(
f̂(x +̂ δ) −̂ f̂(x)

)
/̂ δ
∣∣∣

6 ε
∣∣f̂(x +̂ δ) −̂ f̂(x)

∣∣/δ =
ε

δ

∣∣f(x+ δ)− f(x)
∣∣︸ ︷︷ ︸

O(δ)

+O(δ−1ε2) = O(ε+ δ−1ε2).

This term is also negligible in front of the other dominant contributions to the roundoff error
given in (1.12) and (1.13). Going back to (1.9), we conclude that∣∣∣∣f(x+ δ)− f(x)

δ
−
(
f̂(x +̂ δ) −̂ f̂(x)

)
/̂ δ

∣∣∣∣ 6 δ−1ε
(
2|f(x)|+ |f ′(x)x|

)
+O

(
ε+ δ−1ε2

)
.

Concluding the proof. Going back to (1.8), we conclude that

|f ′(x)− d(δ)| 6 δ

2
|f ′′(x)|+ ε

δ

(
2|f(x)|+ |f ′(x)x|

)
,
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up to higher order terms. For fixed x, the right-hand side is minimized when

δ =
√
ε

√
2|f(x)|+ |f ′(x)x|

|f ′′(x)|
,

which is a well-known formula for the optimal step size in numerical differentiation. The error
as a function of δ for x = 1 is depicted in Figure 1.4. 4

Figure 1.4: Solution to Exercise 1.22.

� Exercise 1.23. Explain why exp(log(Float16(7))) == 7 is false.

Solution. We begin by finding the binary representation of log(7). In the F64 format, the sign
and exponent are encoded over 1 and 11 bits respectively, and so the fraction is given by the
last 52 bits, which can be obtained from the command

julia> bitstring(log(7))[13:end]
"1111001000100111001010101110001100100101101001010111"

Therefore,

log(7) = (1.1111001000︸ ︷︷ ︸
11 bits

100111001010101110001100100101101001010111...)2 (1.16)

The number returned by the command log(Float16(7)) is given by fl16
(
log(7)

)
, where fl16

denotes the half-precision rounding operator. Rounding the right-hand side of (1.16) to 11 bits,
we obtain

fl16
(
log(7)

)
= (1.1111001001)2 = 1.9462890625.

The number returned by the code exp(log(Float16(7))) is

fl16
(

exp
(

fl16
(
log(7)

)))
= fl16

(
exp(1.9462890625)

)
.

The rounding operator appears twice on the left-hand side, because the computer rounds after
every operation. To explain the result of the rounding operation, we begin by calculating the
binary expansion of exp(1.9462890625).
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julia> bitstring(exp(1.9462890625))[13:end]
"1100000000101011011101110000111000100001100010001110"

julia> exponent(exp(1.9462890625))
2

Therefore,

exp(1.9462890625) = 22(1.1100000000︸ ︷︷ ︸
11 bits

101011011101110000111000100001100010001110...)2,

and, rounding to 11 bits, we finally obtain

fl16
(
exp(1.9462890625)

)
= 22(1.1100000001)2 = 4

(
1 +

1

2
+

1

4
+

1

210

)
= 7 +

1

28
= 7.00390625,

which is different from 7. 4

� Exercise 1.24. Determine the encoding of the following Float32 numbers:

• x1 = 2.0Emin

• x2 = −2.0Emin−p−1 = −2.0−149

• x3 = 2.0Emax(2− 2−p+1)

Check your results using the Julia function bitstring.

� Exercise 1.25 (Summary). True or false?

1. Let (•)2 denote binary representation. It holds that (0.1111)2 + (0.0001)2 = 1.

2. It holds that (1000)2 × (0.001)2 = 1.

3. It holds that
(0.1)3 =

1

2
.

4. In base 16, all the natural numbers from 1 to 200 can be represented using 2 digits.

5. In Julia, Float64(.1) == Float32(.1) evaluates to true.

6. The spacing (in absolute value) between successive double-precision (Float64) floating point
numbers is constant.

7. It holds that (0.10101)2 = (1.2345)10.

8. Machine addition +̂ is an associative operation. More precisely, given any three double-
precision floating point numbers x, y and z, the following equality holds:

(x +̂ y) +̂ z = x +̂ (y +̂ z).
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9. The machine epsilon is the smallest strictly positive number that can be represented in a
floating point format.

10. Let ε denote the machine epsilon for the double-precision format. Let also +̂ and /̂

denote respectively the machine addition and the machine division operators for the double-
precision format. It holds that 1 +̂ (ε /̂ 64) = 1 and that ε /̂ 64 6= 0.

11. Assume that x ∈ R belongs to the double-precision floating point format (that is, assume
that x ∈ F64). Then −x ∈ F64.

1.7 Discussion and bibliography

This chapter is mostly based on the original 1985 IEEE 754 standard [3] and the reference
book [9]. A significant revision to the 1985 IEEE standard was published in 2008 [4], adding for
example specifications for the half precision and quad precision formats, and a minor revision was
published in 2019 [5]. The original IEEE standard and its revisions constitute the authoritative
guide on floating point formats. It was intended to be widely disseminated and is written very
clearly and concisely, but is not available for free online. Another excellent source for learning
about floating point numbers and round-off errors is D. Goldberg’s paper “What every computer
scientist should know about floating-point arithmetic” [2], freely available online.
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