
Numerical Analysis: Final Exam
(50 marks, only the 5 best questions count)

Urbain Vaes

12 December 2022

You are allowed to use a calculator, but not Julia or Python.

Academic integrity pledge

□ I certify that I will not give or receive any unauthorized help on this exam, and that all

work will be my own. (Tick ✓ or copy the sentence on your answer sheet).
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Question 1 (Floating point arithmetic, 10 marks). True or false? +1/0/-1

1. Let (•)3 denote base 3 representation. It holds that

(222, 222)3 + (1)3 = (1, 000, 000)3.

2. Let (•)2 denote base 2 representation. It holds that

3× (0.0101)2 = (0.1111)2.

3. The following equality holds

(0.011)2 =
3

4
.

4. The number x = (d1d2d3)3 for d1, d2, d3 ∈ {0, 1, 2} is a multiple of 3 if and only if d3 = 0.

5. In Julia, Float64(0.375) == Float32(0.375) evaluates to true.

6. The value of the machine epsilon is the same for the single precision (F32) and the

double precision (F64) formats.

7. The spacing (in absolute value) between successive double-precision (Float64) floating

point numbers is equal to the machine epsilon.

8. All the natural numbers can be represented exactly in the double precision floating

point format F64.

9. Machine addition in the F64 format is associative but not commutative.

10. In Julia exp(eps()) == 1 + eps() evaluates to true. (Remember that, by default,

rounding is to the nearest representable number).

11. In Julia sqrt(1 + eps()) == 1 + eps() evaluates to true.

12. Let x and y be two numbers in F64. The result of the machine multiplication x ∗̂ y is

sometimes exact and sometimes not, depending on the values of x and y.

13. In Julia, let f(x) = (x == x/100.0) ? x : f(x/100.0) 1. Then f(3.0) returns 0.0.

1In Python, let f = lambda x: x if x == x/100.0 else f(x/100.0)
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Question 2 (Interpolation, 10 marks). Let u : [−1, 1] → R be given by

u(x) = x3.

Let p : [−1, 1] → R denote the interpolating polynomial of u at nodes x0 < x1 < x2, all

contained in the interval [−1, 1].

1. (2 marks) Let e(x) := u(x)−p(x). Prove, without assuming any result shown in class,

that the interpolation error satisfies

∀x ∈ [0, 1], e(x) = (x− x0)(x− x1)(x− x2).

2. (2 marks) Using a method of your choice, calculate the interpolating polynomial p in

the particular case where

x0 = −1, x1 = 0, x2 = 1. (1)

3. (2 marks) We denote the maximum absolute value of the error by

E := max
x∈[−1,1]

∣∣e(x)∣∣. (2)

Calculate the value of E in the particular case (1).

4. (2 marks) We denote by T3 : [−1, 1] → R the Chebyshev polynomial given by

T3(x) := cos
(
3 arccos(x)

)
.

Show that

T3(x) = 4x3 − 3x

and calculate the roots z0, z1, z2 of T3.

Hint: Note that cos(3θ) = ℜ
(
ei3θ

)
= ℜ

((
eiθ

)3)
, where eiθ = cos(θ) + i sin(θ).

5. (2 marks) Find the expression of the error e(x) and the maximum absolute error E

given in (2) in the case where the interpolation nodes x0, x1, x2 are given by z0, z1, z2.

6. *(Bonus +2) Show that the maximum absolute error (2), viewed as a function of the

interpolation nodes x0, x1, x2, is minimized when xi = zi for i ∈ {0, 1, 2}.

Hint: Reason by contradiction and notice that

∣∣T3(y)
∣∣ = 1 for y ∈

{
−1,−1

2
,
1

2
, 1

}
.
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Question 3 (Numerical integration, 10 marks). Let u : [0, 1] → R be a function we wish

to integrate and

I :=

∫ 1

0
u(x) dx.

1. (3 marks) Consider the following integration rule:

I ≈ w1u(0) + w2u(1). (3)

Find the weights w1, w2 ∈ R so that this integration rule has the highest possible degree

of precision. What is the degree of precision of the rule constructed?

2. (3 marks) Let xi = i/n for i = 0, . . . , n. The composite trapezoidal rule is given by

I ≈ 1

2n

(
u(x0) + 2u(x1) + 2u(x2) + · · ·+ 2u(xn−2) + 2u(xn−1) + u(xn)

)
=: În. (4)

Explain how this rule can be obtained by applying a generalization of the integration

rule (3) in each interval [xi, xi+1].

3. (3 marks) Assume that u ∈ C2
(
[0, 1]

)
. Show that, for all n ∈ N>0,

∣∣I − În
∣∣ ⩽ C2

12n2
, C2 := sup

ξ∈[0,1]

∣∣u′′(ξ)∣∣. (5)

You may use Proposition 1 at the end of this document for the interpolation error.

4. (1 mark) In this part of the question, we assume that u is a quadratic polynomial. It

is possible to show that, in this case,

I − În = −u′′(0)

12n2
.

Explain how, given two approximations În and Î2n obtained with (4), a better approx-

imation of the integral I can be obtained by a linear combination of the form

α1În + α2Î2n.

5. *(Bonus +2) Instead of (3), consider a more general integration rule of the form∫ 1

0
u(x) dx ≈ w1u(x1) + w2u(x2). (6)

Find the weights w1, w2 ∈ R and the nodes x1, x2 ∈ [0, 1] so that this integration rule

has the highest possible degree of precision. What is the degree of precision obtained?
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Question 4 (Iterative method for linear systems, 10 marks). Assume that A ∈ Rn×n is a

symmetric positive definite matrix and that b ∈ Rn. We wish to solve the linear system

Ax = b. (7)

To this end we consider an iterative method where each iteration is of the form

Mxk+1 = Nxk + b. (8)

Here A = M−N is a splitting of A such that M is nonsingular, and xk ∈ Rn denotes the k-th

iterate of the numerical scheme.

1. (3 marks) Let ek := xk − x∗, where x∗ is the exact solution to (7). Prove that

∀k ∈ N, ek+1 = M−1Nek.

2. (2 marks) We denote by ∥•∥A the vector norm

∥x∥A :=
√
xTAx, (9)

and we use the same notation for the induced matrix norm. Prove that

∀k ∈ N, ∥ek∥A ⩽ Lk∥e0∥A, L := ∥M−1N∥A. (10)

3. (1 mark) Is the condition ∥M−1N∥A < 1 sufficient to ensure convergence for all x0?

4. *(3 marks) Show that

∥M−1Nx∥2A = ∥x∥2A − yT (MT + N)y, y := M−1Ax. (11)

Hint: Eliminate N from both sides of the equation by rewriting N = M − A. Then

substitute the expression of y and expand both sides. Remember that a scalar quantity

transposed is equal to itself.

5. (1 mark) Show that, for the Gauss–Seidel method, i.e. when M = L+ D contains just

the lower triangular and diagonal parts of A, it holds that

MT + N = D. (12)

6. (Bonus +2) Deduce from (11) and (12) that, for the Gauss–Seidel method,

∥M−1N∥A < 1.
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Question 5 (Nonlinear equations, 10 marks). We consider the following iterative method

for calculating 3
√
2:

xk+1 = F (xk) := ωxk + (1− ω)
2

x2k
, (13)

with ω ∈ (0, 1) a fixed parameter.

1. (1 mark) Show that x∗ :=
3
√
2 is a fixed point of the iteration (13).

2. (2 marks) Write down in pseudocode a computer program based on the iteration (13)

for calculating 3
√
2. Use an appropriate stopping criterion that does not require to know

the value of 3
√
2.

3. (2 marks) Prove that if ω ∈
(
1
3 , 1

)
, then x∗ is locally exponentially stable. You may

take for granted Proposition 2 at the end of this document.

4. (1 mark) Do you expect faster convergence of (13) with ω = 1
2 or with ω = 2

3?

5. (2 marks) Show that, in the particular case where ω = 2
3 , the iterative scheme (13)

coincides with the Newton–Raphson method applied to the nonlinear equation

f(x) = 0, (14)

for an appropriate function f : R → R.

6. (2 marks) Illustrate graphically a few iterations of the Newton–Raphson method for

solving (14) when starting from x0 = 2. You may either create your own figure or write

on Figure 1 at the end of this document.

7. *(Bonus +2) Prove Proposition 2 in the appendix. More precisely, show that the

assumptions of the proposition imply that there is δ > 0 and L < 1 such that the

following local Lipschitz condition is satisfied:

∀x ∈ [x∗ − δ, x∗ + δ], |F (x)− F (x∗)| ⩽ L|x− x∗|. (15)

For completeness, one should then show that (15) is sufficient to guarantee local expo-

nential stability, but this is taken for granted here; you do not need to prove this.
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Question 6 (Iterative methods for eigenvalue problems, 10 marks). Let ∥•∥ denote both

the Euclidean norm on vectors and the induced matrix norm. Assume that A ∈ Rn×n is

symmetric and nonsingular, and that all the eigenvalues of A have different moduli:

|λ1| > |λ2| > · · · > |λn|.

1. (5 marks) Describe with words and pseudocode a simple numerical method for calcu-

lating the eigenvalue of A of smallest modulus as well as the corresponding eigenvector.

2. (2 marks) Suppose that we have calculated the smallest eigenvalue in modulus λn, as

well as the associated normalized eigenvector vn. We let

B := A−1 − 1

λn
vnv

T
n .

If we apply the power iteration to this matrix, what convergence can we expect? Justify

your answer.

3. *(3 marks) The aim of this part is to provide an answer to the following question:

given an approximate eigenpair (v̂, λ̂), what is the smallest perturbation E that we

need to apply to A in order to guarantee that (v̂, λ̂) is an exact eigenpair, i.e. that

(A+ E)v̂ = λ̂v̂ ?

Assume that v̂ is normalized and let E =
{
E ∈ Cn×n : (A+ E)v̂ = λ̂v̂

}
. Prove that

min
E∈E

∥E∥ = ∥r∥, r := Av̂ − λ̂v̂. (16)

Hint: You may find it useful to proceed as follows:

• Show first that E ∈ E if and only if Ev̂ = −r.

• Deduce from the previous item that

∀E ∈ E , ∥E∥ ⩾ ∥r∥.

• Find a rank one matrix E∗ ∈ E such that ∥E∗∥ = ∥r∥, and then conclude. Recall

that any rank 1 matrix can be written in the form E∗ = uw∗, with norm ∥u∥∥w∥.

4. (Bonus +2) Suppose that we have calculated λn and λn−1 together with the associated

normalized eigenvectors. Propose a method for calculating the third smallest eigenvalue

in modulus, i.e. λn−2.
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Auxiliary results

Proposition 1. Assume that f : [a, b] → R is a function in C2([a, b]) and let f̂ denote the

interpolation of f at two distinct interpolation nodes y1, y2. Then there exists ξ : [a, b] → [a, b]

such that

∀y ∈ [a, b], f(y)− f̂(y) =
f ′′(ξ(y))

2
(y − y1)(y − y2).

Proposition 2. Assume that F : (0,∞) → (0,∞) is continuously differentiable, and suppose

that x∗ ∈ (0,∞) is a fixed point of the iteration xk+1 = F (xk). If

|F ′(x∗)| < 1,

then the fixed point x∗ is locally exponentially stable.

Figure 1: You can use this figure to illustrate the Newton–Raphson method.
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