If \mathbf{\boldsymbol{F}} is Lipschitz continuous with L < 1,
\forall (\mathbf{\boldsymbol{x}}, \mathbf{\boldsymbol{y}}) \in \mathbf R^n \times \mathbf R^n, \qquad
{\lVert {\mathbf{\boldsymbol{F}}(\mathbf{\boldsymbol{x}}) - \mathbf{\boldsymbol{F}}(\mathbf{\boldsymbol{y}})} \rVert} \leqslant L {\lVert {\mathbf{\boldsymbol{x}} - \mathbf{\boldsymbol{y}}} \rVert}
then
There exists a unique fixed point \mathbf{\boldsymbol{x}}_* of \mathbf{\boldsymbol{F}}.
The sequence (\mathbf{\boldsymbol{x}}_k)_{k\in \mathbf N} converges exponentially to \mathbf{\boldsymbol{x}}_*:
\forall k \in \mathbf N, \qquad
{\lVert {\mathbf{\boldsymbol{x}}_k - \mathbf{\boldsymbol{x}}_*} \rVert} \leqslant L^k {\lVert {\mathbf{\boldsymbol{x}}_0 - \mathbf{\boldsymbol{x}}_*} \rVert}.